2023-2024学年重庆市江津中学、合川中学等七校高一数学第二学期期末调研试题含解析_第1页
2023-2024学年重庆市江津中学、合川中学等七校高一数学第二学期期末调研试题含解析_第2页
2023-2024学年重庆市江津中学、合川中学等七校高一数学第二学期期末调研试题含解析_第3页
2023-2024学年重庆市江津中学、合川中学等七校高一数学第二学期期末调研试题含解析_第4页
2023-2024学年重庆市江津中学、合川中学等七校高一数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年重庆市江津中学、合川中学等七校高一数学第二学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若数列满足,,则()A. B. C.18 D.202.已知函数的图像如图所示,关于有以下5个结论:(1);(2),;(3)将图像上所有点向右平移个单位得到的图形所对应的函数是偶函数;(4)对于任意实数x都有;(5)对于任意实数x都有;其中所有正确结论的编号是()A.(1)(2)(3) B.(1)(2)(4)(5) C.(1)(2)(4) D.(1)(3)(4)(5)3.若不等式对实数恒成立,则实数的取值范围()A.或 B.C. D.4.已知角A满足,则的值为()A. B. C. D.5.已知等比数列的前n项和为,若,,,则()A. B. C. D.6.已知点和点,且,则实数的值是()A.或 B.或 C.或 D.或7.在等差数列中,已知=2,=16,则为()A.8 B.128 C.28 D.148.已知点,,则与向量的方向相反的单位向量是()A. B. C. D.9.如图,位于处的海面观测站获悉,在其正东方向相距40海里的处有一艘渔船遇险,并在原地等待营救.在处南偏西且相距20海里的处有一救援船,其速度为海里小时,则该船到求助处的时间为()分钟.A.24 B.36 C.48 D.6010.某学校的A,B,C三个社团分别有学生人,人,人,若采用分层抽样的方法从三个社团中共抽取人参加某项活动,则从A社团中应抽取的学生人数为()A.2 B.4 C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的侧面积为________.12.设函数f(x)是定义在R上的偶函数,且对称轴为x=1,已知当x∈[0,1]时,f(x)=121-x,则有下列结论:①2是函数fx的周期;②函数fx在1,2上递减,在2,3上递增;③函数f13.某扇形的面积为1,它的周长为4cm,那么扇形的圆心角的大小为____________.14.函数y=tan15.命题“,”是________命题(选填“真”或“假”).16.在平行四边形中,为与的交点,,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知以点(a∈R,且a≠0)为圆心的圆过坐标原点O,且与x轴交于点A,与y轴交于点B.(1)求△OAB的面积;(2)设直线l:y=﹣2x+4与圆C交于点P、Q,若|OP|=|OQ|,求圆心C到直线l的距离.18.已知函数.(1)当时,判断并证明函数的奇偶性;(2)当时,判断并证明函数在上的单调性.19.如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面(I)证明:平面AEC⊥平面BED;(II)若∠ABC=120∘,AE⊥EC,三棱锥E-ACD的体积为20.已知点.(1)求中边上的高所在直线的方程;(2)求过三点的圆的方程.21.已知(1)求函数的单调递减区间:(2)已知,求的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

首先根据题意得到:是以首项为,公差为的等差数列.再计算即可.【详解】因为,所以是以首项为,公差为的等差数列.,.故选:A【点睛】本题主要考查等差数列的定义,熟练掌握等差数列的表达式是解题的关键,属于简单题.2、B【解析】

由图象可观察出的最值和周期,从而求出,将图像上所有的点向右平移个单位得到的函数,可判断(3)的正误,利用,可判断(4)(5)的正误.【详解】由图可知:,所以,,所以,即因为,所以,所以,故(1)(2)正确将图像上所有的点向右平移个单位得到的函数为此函数是奇函数,故(3)错误因为所以关于直线对称,即有故(4)正确因为所以关于点对称,即有故(5)正确综上可知:正确的有(1)(2)(4)(5)故选:B【点睛】本题考查的是三角函数的图象及其性质,属于中档题.3、C【解析】

对m分m≠0和m=0两种情况讨论分析得解.【详解】由题得时,x<0,与已知不符,所以m≠0.当m≠0时,,所以.综合得m的取值范围为.故选C【点睛】本题主要考查一元二次不等式的恒成立问题,意在考查学生对该知识的理解掌握水平和分析推理能力.4、A【解析】

将等式两边平方,利用二倍角公式可得出的值.【详解】,在该等式两边平方得,即,解得,故选A.【点睛】本题考查同角三角函数的基本关系,考查二倍角正弦公式的应用,一般地,解三角函数有关问题时,遇到,常用平方法来求解,考查计算能力,属于中等题.5、D【解析】

根据等比数列前n项和的性质可知、、成等比数列,即可得关于的等式,化简即可得解.【详解】等比数列的前n项和为,若,,根据等比数列前n项和性质可知,、、满足:化简可得故选:D【点睛】本题考查了等比数列前n项和的性质及简单应用,属于基础题.6、A【解析】

直接利用两点间距离公式得到答案.【详解】已知点和点故答案选A【点睛】本题考查了两点间距离公式,意在考查学生的计算能力.7、D【解析】

将已知条件转化为的形式列方程组,解方程组求得,进而求得的值.【详解】依题意,解得,故.故选:D.【点睛】本小题主要考查等差数列通项的基本量计算,属于基础题.8、A【解析】

根据单位向量的定义即可求解.【详解】,向量的方向相反的单位向量为,故选A.【点睛】本题主要考查了向量的坐标运算,向量的单位向量的概念,属于中档题.9、A【解析】

利用余弦定理求出的长度,然后根据速度、时间、路程之间的关系求出时间即可.【详解】由题意可知:,运用余弦定理可知:该船到求助处的时间,故本题选A.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.10、B【解析】

分层抽样每部分占比一样,通过A,B,C三个社团为,易得A中的人数。【详解】A,B,C三个社团人数比为,所以12中A有人,B有人,C有人。故选:B【点睛】此题考查分层抽样原理,根据抽样前后每部分占比一样求解即可,属于简单题目。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先求出四棱锥的底面对角线的长度,结合勾股定理可求出四棱锥的高,然后由圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,可知四条侧棱的中点连线为正方形,其对角线为圆柱底面的直径,圆柱的高为四棱锥的高的一半,分别求解可求出圆柱的侧面积.【详解】由题可知,四棱锥是正四棱锥,四棱锥的四条侧棱的中点连线为正方形,边长为,该正方形对角线的长为1,则圆柱的底面半径为,四棱锥的底面是边长为的正方形,其对角线长为2,则四棱锥的高为,故圆柱的高为1,所以圆柱的侧面积为.【点睛】本题主要考查了空间几何体的结构特征,考查了学生的空间想象能力与计算求解能力,属于中档题.12、①②④【解析】

依据题意作出函数f(x)的图像,通过图像可以判断以下结论是否正确。【详解】作出函数f(x)的图像,由图像可知2是函数fx的周期,函数fx在1,2上递减,在2,3上递增,函数当x∈3,4时,f(x)=f(x-4)=f(4-x)=故正确的结论有①②④。【点睛】本题主要考查函数的图像与性质以及数形结合思想,意在考查学生的逻辑推理能力。13、【解析】

根据扇形的面积和周长列方程组解得半径和弧长,再利用弧长公式可求得结果.【详解】设扇形的半径为,弧长为,圆心角为,则,解得,所以.故答案为:【点睛】本题考查了扇形的面积公式,考查了扇形中弧长公式,属于基础题.14、{【解析】

解方程12【详解】由题得12x+故答案为{x|x≠2kπ+【点睛】本题主要考查正切型函数的定义域的求法,意在考查学生对该知识的理解掌握水平,属于基础题.15、真【解析】当时,成立,即命题“,”为真命题.16、【解析】

根据向量加法的三角形法则逐步将待求的向量表示为已知向量.【详解】由向量的加法法则得:所以,所以故填:【点睛】本题考查向量的线性运算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4(2)【解析】

(1)求得圆的半径,设出圆的标准方程,由此求得两点坐标,进而求得三角形的面积.(2)根据,判断出,由直线的斜率求得直线的斜率,以此列方程求得,根据直线和圆相交,圆心到直线的距离小于半径,确定,同时得到圆心到直线的距离.【详解】(1)根据题意,以点(a∈R,且a≠0)为圆心的圆过坐标原点O,设圆C的半径为r,则r2=a2,圆C的方程为(x﹣a)2+(y)2=a2,令x=0可得:y=0或,则B(0,),令y=0可得:x=0或2a,则A(2a,0),△OAB的面积S|2a|×||=4;(2)根据题意,直线l:y=﹣2x+4与圆C交于点P、Q,则|CP|=|CQ|,又由|OP|=|OQ|,则直线OC与PQ垂直,又由直线l即PQ的方程为y=﹣2x+4,则KOC,解可得a=±2,当a=2时,圆心C的坐标为(2,1),圆心到直线l的距离d,r,r>d,此时直线l与圆相交,符合题意;当a=2时,圆心C的坐标为(﹣2,﹣1),圆心到直线l的距离d,r,r<d,此时直线l与圆相离,不符合题意;故圆心C到直线l的距离d.【点睛】本小题主要考查圆的标准方程,考查直线和圆的位置关系,考查两条直线的位置关系,考查运算求解能力,属于中档题.18、(1)见解析;(2)见解析.【解析】

(1)将代入函数的解析式,利用函数的奇偶性定义来证明出函数的奇偶性;(2)将函数的解析式化为,然后利用函数单调性的定义证明出函数在上的单调性.【详解】(1)当时,,函数为上的奇函数.证明如下:,其定义域为,则,故函数为奇函数;(2)当时,函数在上单调递减.证明如下:,任取,则,又由,则,则有,即.因此,函数为上的减函数.【点睛】本题考查函数单调性与奇偶性的判定与证明,在利用定义证明函数的单调性与奇偶性时,要熟悉定义法证明函数奇偶性与单调性的基本步骤,考查逻辑推理能力与计算能力,属于中等题.19、(1)见解析(2)3+25【解析】试题分析:(Ⅰ)由四边形ABCD为菱形知AC⊥BD,由BE⊥平面ABCD知AC⊥BE,由线面垂直判定定理知AC⊥平面BED,由面面垂直的判定定理知平面AEC⊥平面BED;(Ⅱ)设AB=x,通过解直角三角形将AG、GC、GB、GD用x表示出来,在RtΔAEC中,用x表示EG,在RtΔEBG中,用x表示EB,根据条件三棱锥E-ACD的体积为63求出x,即可求出三棱锥E-ACD试题解析:(Ⅰ)因为四边形ABCD为菱形,所以AC⊥BD,因为BE⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED(Ⅱ)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x因为AE⊥EC,所以在RtΔAEC中,可得EG=32x由BE⊥平面ABCD,知ΔEBG为直角三角形,可得BE=22由已知得,三棱锥E-ACD的体积VE-ACD=1从而可得AE=EC=ED=6.所以ΔEAC的面积为3,ΔEAD的面积与ΔECD的面积均为5.故三棱锥E-ACD的侧面积为3+考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力20、(1);(2)【解析】

(1)边上的高所在直线方程斜率与边所在直线的方程斜率之积为-1,可求出高所在直线的斜率,代入即可求出高所在直线的方程。(2)设圆的一般方程为,代入即可求得圆的方程。【详解】(1)因为所在直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论