版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省武威第十八中学三2025届数学高一下期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列的通项,其前项之和为,则在平面直角坐标系中,直线在轴上的截距为()A.-10 B.-9 C.10 D.92.函数的图像大致为()A. B. C. D.3.在中,分别为角的对边,若,且,则边=()A. B. C. D.4.在中,已知,,则为()A.等腰直角三角形 B.等边三角形C.锐角非等边三角形 D.钝角三角形5.设、满足约束条件,则的最大值为()A. B.C. D.6.已知某数列的前项和(为非零实数),则此数列为()A.等比数列 B.从第二项起成等比数列C.当时为等比数列 D.从第二项起的等比数列或等差数列7.执行如下的程序框图,则输出的是()A. B.C. D.8.数列1,,,,…的一个通项公式为()A. B. C. D.9.若不等式对一切恒成立,则实数的最大值为()A.0 B.2 C. D.310.已知圆,直线.设圆O上到直线l的距离等于2的点的个数为k,则()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.设,若用含的形式表示,则________.12.已知等差数列满足,则____________.13.走时精确的钟表,中午时,分针与时针重合于表面上的位置,则当下一次分针与时针重合时,时针转过的弧度数的绝对值等于_______.14.在等比数列中,若,则等于__________.15.若,其中是第二象限角,则____.16.________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系下,已知圆O:,直线l:()与圆O相交于A,B两点,且.(1)求直线l的方程;(2)若点E,F分别是圆O与x轴的左、右两个交点,点D满足,点M是圆O上任意一点,点N在线段上,且存在常数使得,求点N到直线l距离的最小值.18.如图,在三棱锥A﹣BCD中,AB=AD,BD⊥CD,点E、F分别是棱BC、BD的中点.(1)求证:EF∥平面ACD;(2)求证:AE⊥BD.19.已知,,,,求的值.20.在中,角A,B,C的对边分别为a,b,c,已知.(1)求角B的大小;(2)若,,求的面积.21.已知数列的前n项和为,且,求数列的通项公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:因为数列的通项公式为,所以其前项和为,令,所以直线方程为,令,解得,即直线在轴上的截距为,故选B.考点:数列求和及直线方程.2、A【解析】
先判断函数为偶函数排除;再根据当时,,排除得到答案.【详解】,偶函数,排除;当时,,排除故选:【点睛】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.3、B【解析】
由利用正弦定理化简,再利用余弦定理表示出cosA,整理化简得a2b2+c2,与,联立即可求出b的值.【详解】由sinB=8cosAsinC,利用正弦定理化简得:b=8c•cosA,将cosA代入得:b=8c•,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),则b=1.故选B【点睛】此题考查了正弦、余弦定理,熟练掌握定理,准确计算是解本题的关键,是中档题4、A【解析】
已知第一个等式利用正弦定理化简,再利用诱导公式及内角和定理表示,根据两角和与差的正弦函数公式化简,得到A=B,第二个等式左边前两个因式利用积化和差公式变形,右边利用二倍角的余弦函数公式化简,将A+B=C,A﹣B=0代入计算求出cosC的值为0,进而确定出C为直角,即可确定出三角形形状.【详解】将已知等式2acosB=c,利用正弦定理化简得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A与B都为△ABC的内角,∴A﹣B=0,即A=B,已知第二个等式变形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,则△ABC为等腰直角三角形.故选A.【点睛】此题考查了正弦定理,两角和与差的正弦公式,二倍角的余弦函数公式,熟练掌握正弦定理是解本题的关键.5、C【解析】
作出不等式组所表示的可行域,平移直线,观察直线在轴上的截距最大时对应的最优解,再将最优解代入目标函数可得出结果.【详解】作出不等式组所表示的可行域如下图中的阴影部分区域表示:联立,得,可得点的坐标为.平移直线,当该直线经过可行域的顶点时,直线在轴上的截距最大,此时取最大值,即,故选:C.【点睛】本题考查简单线性规划问题,一般作出可行域,利用平移直线结合在坐标轴上的截距取最值来取得,考查数形结合思想的应用,属于中等题.6、D【解析】
设数列的前项和为,运用数列的递推式:当时,,当时,,结合等差数列和等比数列的定义和通项公式,即可得到所求结论.【详解】设数列的前项和为,对任意的,(为非零实数).当时,;当时,.若,则,此时,该数列是从第二项起的等差数列;若且,不满足,当时,,此时,该数列是从第二项起的等比数列.综上所述,此数列为从第二项起的等比数列或等差数列.故选:D.【点睛】本题考查数列的递推式的运用,等差数列和等比数列的定义和通项公式,考查分类讨论思想和运算能力,属于中档题.7、A【解析】
列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.8、A【解析】
把数列化为,根据各项特点写出它的一个通项公式.【详解】数列…可以化为,所以该数列的一个通项公式为.故选:A【点睛】本题考查了根据数列各项特点写出它的一个通项公式的应用问题,是基础题目.9、C【解析】
采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值.【详解】因为不等式对一切恒成立,所以对一切,,即恒成立.令.易知在内为增函数.所以当时,,所以的最大值是.故选C.【点睛】常见的求解参数范围的方法:(1)分类讨论法(从临界值、特殊值出发);(2)参变分离法(考虑新函数与参数的关系).10、B【解析】
找出圆O的圆心坐标与半径r,利用点到直线的距离公式求出圆心O到直线l的距离d,根据d与r的大小关系及r-d的值,即可作出判断.【详解】由圆的方程得到圆心O(0,0),半径,∵圆心O到直线l的距离,且r−d=−1<2,∴圆O上到直线l的距离等于2的点的个数为2,即k=2.故选:B.【点睛】本题考查直线与圆的位置关系,利用圆心到直线的距离公式求出圆心O到直线l的距离d,根据d与r的大小关系可判断直线与圆的位置,考查计算和几何应用能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
两边取以5为底的对数,可得,化简可得,根据对数运算即可求出结果.【详解】因为所以两边取以5为底的对数,可得,即,所以,,故填.【点睛】本题主要考查了对数的运算法则,属于中档题.12、9【解析】
利用等差数列下标性质求解即可【详解】由等差数列的性质可知,,则.所以.故答案为:9【点睛】本题考查等差数列的性质,熟记性质是关键,是基础题13、.【解析】
设时针转过的角的弧度数为,可知分针转过的角为,于此得出,由此可计算出的值,从而可得出时针转过的弧度数的绝对值的值.【详解】设时针转过的角的弧度数的绝对值为,由分针的角速度是时针角速度的倍,知分针转过的角的弧度数的绝对值为,由题意可知,,解得,因此,时针转过的弧度数的绝对值等于,故答案为.【点睛】本题考查弧度制的应用,主要是要弄清楚时针与分针旋转的角之间的等量关系,考查分析问题和计算能力,属于中等题.14、【解析】
由等比数列的性质可得,,代入式子中运算即可.【详解】解:在等比数列中,若故答案为:【点睛】本题考查等比数列的下标和性质的应用.15、【解析】
首先要用诱导公式得到角的正弦值,根据角是第二象限的角得到角的余弦值,再用诱导公式即可得到结果.【详解】解:,又是第二象限角故,故答案为.【点睛】本题考查同角的三角函数的关系,本题解题的关键是诱导公式的应用,熟练应用诱导公式是解决三角函数问题的必备技能,属于基础题.16、【解析】
直接利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可得到结果.【详解】.故答案为:.【点睛】本题考查两角和与差的余弦函数公式,以及特殊角的三角函数值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)等价于圆心O到直线l的距离,再由点到直线的距离公式求解即可;(2)先设点,再结合题意可得点N在以为圆心,半径为的圆R上,再结合点到直线的距离公式求解即可.【详解】解:(1)∵圆O:,圆心,半径,∵直线l:()与圆O相交于A,B两点,且,∴圆心O到直线l的距离,又,,解得,∴直线l的方程为;(2)∵点E,F分别是圆O与x轴的左、右两个交点,,∴,,设,,则,,,,,即.又∵点N在线段上,即,共线,,,∵点M是圆O上任意一点,,∴将m,n代入上式,可得,即.则点N在以为圆心,半径为的圆R上.圆心R到直线l:的距离,又,故点N到直线l:距离的最小值为1.【点睛】本题考查了点到直线的距离公式,重点考查了点的轨迹方程的求法,属中档题.18、(1)证明见解析(2)证明见解析【解析】
(1)证明EF∥CD,然后利用直线与平面平行的判断定理证明EF∥平面ACD;(2)证明BD⊥平面AEF,然后说明AE⊥BD.【详解】(1)因为点E、F分别是棱BC、BD的中点,所以EF是△BCD的中位线,所以EF∥CD,又因为EF⊄平面ACD,CD⊂平面ACD,EF∥平面ACD.(2)由(1)得,EF∥CD,又因为BD⊥CD,所以EF⊥BD,因为AB=AD,点F是棱BD的中点,所以AF⊥BD,又因为EF∩AF=F,所以BD⊥平面AEF,又因为AE⊂平面AEF,所以AE⊥BD.【点睛】本题考查直线与平面垂直的性质以及直线与平面平行的判断定理的应用,考查逻辑推理能力与空间想象能力,是基本知识的考查.19、【解析】
根据角的范围结合条件可求出,的值,然后求出的值,再由二倍角公式可求解.【详解】由,,得.又,则.由,,得.所以又所以【点睛】本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货运司机突发疾病应急预案
- 10KV电力线路施工进度安排方案
- 学校核酸检测信息宣传方案
- 建筑行业人事档案工作标准
- 二手房交易的中介合同
- 健身房墙面装饰板施工方案
- 2024-2030年中国蛋白饮料市场竞争格局及投资盈利预测报告
- 2024-2030年中国草莓酒行业市场营销模式及投资前景展望报告权威版
- 2024-2030年中国精神病医院行业供给态势及投资运营分析报告版
- 2024-2030年中国移动搜索行业发展模式及投资策略研究报告
- 雅鲁藏布江大拐弯巨型水电站规划方案
- 广西基本医疗保险门诊特殊慢性病申报表
- 城市经济学习题与答案
- 国开成本会计第14章综合练习试题及答案
- 幼儿园大班科学:《树叶为什么会变黄》课件
- 1到50带圈数字直接复制
- 铁路工程施工组织设计(施工方案)编制分类
- 幼儿园中班数学《有趣的图形》课件
- 《规划每一天》教案2021
- 草莓创意主题实用框架模板ppt
- 山大口腔颌面外科学课件第5章 口腔种植外科-1概论、口腔种植的生物学基础
评论
0/150
提交评论