版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省鸡西市2025届高一下数学期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设变量,满足约束条件则目标函数的最小值为()A.4 B.-5 C.-6 D.-82.已知函数和的定义域都是,则它们的图像围成的区域面积是()A. B. C. D.3.已知角A满足,则的值为()A. B. C. D.4.已知,,则()A.1 B.2 C. D.35.右边茎叶图记录了甲、乙两组各十名学生在高考前体检中的体重(单位:).记甲组数据的众数与中位数分别为,乙组数据的众数与中位数分别为,则()A. B.C. D.6.设向量满足,且,则向量在向量方向上的投影为A.1 B. C. D.7.若,,,点C在AB上,且,设,则的值为()A. B. C. D.8.如图,在中,已知D是边延长线上一点,若,点E为线段的中点,,则()A. B. C. D.9.过点作抛物线的两条切线,切点为,则的面积为()A. B. C. D.10.在中,,则一定是()A.等腰三角形 B.直角三角形C.等边三角形 D.等腰直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.在数列中,按此规律,是该数列的第______项12.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.13.已知函数,,则的最大值是__________.14.在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为________.15.已知三棱锥,若平面ABC,,则异面直线PB与AC所成角的余弦值为______.16.假设我国国民生产总值经过10年增长了1倍,且在这10年期间我国国民生产总值每年的年增长率均为常数,则______.(精确到)(参考数据)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,数列满足,且(1)求数列和的通项公式;(2)求数列的前项和.18.已知函数.(Ⅰ)求的定义域;(Ⅱ)设是第一象限角,且,求的值.19.如图,四棱锥中,,平面平面,,为的中点.(1)求证://平面;(2)求点到面的距离(3)求二面角平面角的正弦值20.中,角A,B,C所对边分别是a、b、c,且.(1)求的值;(2)若,求面积的最大值.21.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)请确定是否是数列中的项?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】绘制不等式组所表示的平面区域,结合目标函数的几何意义可知,目标函数在点处取得最小值.本题选择D选项.2、C【解析】
由可得,所以的图像是以原点为圆心,为半径的圆的上半部分;再结合图形求解.【详解】由可得,作出两个函数的图像如下:则区域①的面积等于区域②的面积,所以他们的图像围成的区域面积为半圆的面积,即.故选C.【点睛】本题考查函数图形的性质,关键在于的识别.3、A【解析】
将等式两边平方,利用二倍角公式可得出的值.【详解】,在该等式两边平方得,即,解得,故选A.【点睛】本题考查同角三角函数的基本关系,考查二倍角正弦公式的应用,一般地,解三角函数有关问题时,遇到,常用平方法来求解,考查计算能力,属于中等题.4、A【解析】
根据向量的坐标运算法则直接求解.【详解】因为,,所以,所以,故选:A.【点睛】本题考查向量的坐标运算,属于基础题.5、D【解析】甲组数据的众数为x1=64,乙组数据的众数为x2=66,则x1<x2;甲组数据的中位数为y1==65,乙组数据的中位数为y2==66.5,则y1<y2.6、D【解析】
先由题中条件,求出向量的数量积,再由向量数量积的几何意义,即可求出投影.【详解】因为,,所以,所以,故向量在向量方向上的投影为.故选D【点睛】本题主要考查平面向量的数量积,熟记平面向量数量积的几何意义即可,属于常考题型.7、B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.8、B【解析】
由,,,,代入化简即可得出.【详解】,带人可得,可得,故选B.【点睛】本题考查了向量共线定理、向量的三角形法则,考查了推理能力与计算能力,属于中档题.9、B【解析】设抛物线过点的切线方程为,即,将点代入可得,同理都满足方程,即为直线的方程为,与抛物线联立,可得,点到直线的距离,则的面积为,故选B.【方法点晴】本题主要考查利用导数求曲线切线方程以及弦长公式与点到直线距离公式,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.10、B【解析】
利用余弦定理、三角形面积公式、正弦定理,求得和,通过等式消去,求得的两个值,再判断三角形的形状.【详解】,又,,,又,,又,,,,,,解得:或,一定是直角三角形.【点睛】本题在求解过程中对存在两组解,要注意解答的完整性与严谨性,综合两种情况,再对的形状作出判断.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
分别求出,,,结果构成等比数列,进而推断数列是首相为2,公比为2的等比数列,进而求得数列的通项公式,再由求得答案.【详解】,,,依此类推可得,,,即.,解得.故答案为:7.【点睛】本题考查利用数列的递推关系求数列的通项公式,求解的关键在于推断是等比数列,再用累加法求得数列的通项公式,考查逻辑推理能力和运算求解能力.12、【解析】
先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.13、3【解析】函数在上为减函数,故最大值为.14、32【解析】
根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则△ABC的面积为,即ac=2a+2c,得,得,当且仅当,即3c=a时取等号;∴的最小值为32.故答案为:32.【点睛】本题考查三角形中的几何计算,属于中等题.15、【解析】
过B作,且,则或其补角即为异面直线PB与AC所成角由此能求出异面直线PB与AC所成的角的余弦值.【详解】过B作,且,则四边形为菱形,如图所示:或其补角即为异面直线PB与AC所成角.设.,,平面ABC,,.异面直线PB与AC所成的角的余弦值为.故答案为.【点睛】本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.16、【解析】
根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,结合题意可得,解可得的值,即可得答案.【详解】解:根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,则有,即,解可得:,故答案为:.【点睛】本题考查函数的应用,涉及指数、对数的运算,关键是得到关于的方程,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)由等差数列和等比数列的定义、可得所求通项公式;(2)求得,由数列的错位相减法求和,结合等比数列的求和公式可得所求和.【详解】解:(1)∵,即,,∴为首项为1,公差为2的等差数列,即;∵,即有,∴为首项为1,公比为的等比数列,即;(2),∴,∴,两式相减可得,化简可得【点睛】本题主要考查等差数列和等比数列的定义、通项公式和求和公式的运用,考查数列的错位相减法求和,化简运算能力,属于中档题.18、(Ⅰ);(Ⅱ).【解析】
(1)本题可根据分式的分母不能为得出,然后解即可得出函数的定义域;(2)本题首先可根据以及同角三角函数关系计算出以及的值,然后对函数进行化简,得到,最后通过计算即可得出结果.【详解】(1)由得,,所以,,故的定义域为.(2)因为,且是第一象限角,所以有,解得,.故.【点睛】本题考查三角函数的性质、三角恒等变换的应用,考查的公式有、、、二倍角公式以及两角差的余弦公式,考查化归与转化思想,是中档题.19、(1)见详解;(2);(3)【解析】
(1)通过取中点,利用中位线定理可得四变形为平行四边形,然后利用线面平行的判定定理,可得结果.(2)根据,可得平面,可得结果.(3)作,作,可得二面角平面角为,然后计算,可得结果.【详解】(1)取中点,连接,如图由为的中点,所以//且又,且,所以//且,故//且,所以四变形为平行四边形,故//又平面,平面所以//平面(2)由,平面平面平面,平面平面所以平面,又平面所以,由,所以为正三角形,所以则平面所以平面,且所以点到面的距离即(3)作交于点,作交于点,连接由平面平面,平面平面平面平面,所以平面,平面,所以,又平面,所以平面又平面,所以所以二面角平面角为,又为等腰直角三角形所以,所以所以又二面角平面角为故所以二面角平面角的正弦值为【点睛】本题考查了线面平行的判定定理,还考查了点面距和面面角的求法,第(3)中难点在于找到二面角的平面角,掌握定义以及综合线面,面面的位置关系,细心计算,属中档题.20、(1);(2)【解析】
(1)将化简代入数据得到答案.(2)利用余弦定理和均值不等式计算,代入面积公式得到答案.【详解】;(2)由,可得,由余弦定理可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版本地合作协议标准格式版B版
- 2024年股东权益保护与承诺协议
- 2024建房安全合同协议书建房安全合同
- 2025版酒店加盟品牌运营与推广合同范本3篇
- 2025版文化产业园开业庆典合同样本3篇
- 2024年电子合同法律效力研究
- 2025版居间合同范本(全新版)9篇
- 2024年综合安全监控布局施工协议条款版B版
- 课题申报书:大学生学术思维能力培育研究
- 2025版房地产投资贷款合同房地产金融产品范本3篇
- 低空经济公司的投融资方案
- JGJ 305-2013 建筑施工升降设备设施检验标准
- 桥区岩土工程勘察报告
- 船舶电气设计
- 《城市轨道交通概论》 课件 5-22 乘客信息系统结构及功能
- 2024年荆门中荆投资控股集团招聘笔试冲刺题(带答案解析)
- 2024河北石油职业技术大学教师招聘考试笔试试题
- 2022-2023学年广东省广州市增城区教科版(广州)六年级上册期末测试英语试卷(含听力音频) 【带答案】
- 恶性综合征课件
- 2024年春季国开《学前教育科研方法》期末大作业(参考答案)
- 2024年中考物理复习精讲练(全国)专题22 计算题(力热电综合)(讲练)【学生卷】
评论
0/150
提交评论