2025届上海市五十二中高一数学第二学期期末达标检测试题含解析_第1页
2025届上海市五十二中高一数学第二学期期末达标检测试题含解析_第2页
2025届上海市五十二中高一数学第二学期期末达标检测试题含解析_第3页
2025届上海市五十二中高一数学第二学期期末达标检测试题含解析_第4页
2025届上海市五十二中高一数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市五十二中高一数学第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在三棱锥中,平面,,,点M为内切圆的圆心,若,则三棱锥的外接球的表面积为()A. B. C. D.2.关于x的不等式的解集中,恰有3个整数,则a的取值范围是()A. B. C. D.(4,5)3.在中,角,,所对的边分别是,,,,,,则()A.或 B.C. D.4.在中,已知是边上一点,,,则等于()A. B. C. D.5.如图,在下列四个正方体中,,,,,,,为所在棱的中点,则在这四个正方体中,阴影平面与所在平面平行的是()A. B.C. D.6.若某市所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是()A.91 B.91.5C.92 D.92.57.若直线与圆相切,则的值为A.1 B. C. D.8.函数的部分图象如图所示,则的单调递减区间为A.B.C.D.9.已知向量a=(1,-1),bA.-1 B.0 C.1 D.210.直线mx+4y-2=0与直线2x-5y+n=0垂直,垂足为(1,p),则n的值为()A.-12 B.-14 C.10 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).12.已知平行四边形的周长为,,则平行四边形的面积是_______13.已知数列为等差数列,,,若,则________.14.把正整数排列成如图甲所示的三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图乙所示的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则________________.15.若,且,则__________.16.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)求的单调递增区间.(2)求在区间的最大值和最小值.18.如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.(1)求异面直线与所成角的余弦值;(2)设点是线段上的点,且满足,若直线平面,求实数的值.19.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率;(2)恰有两支一等品的概率;(3)没有三等品的概率.20.底面半径为3,高为的圆锥有一个内接的正四棱柱(底面是正方形,侧棱与底面垂直的四棱柱).(1)设正四棱柱的底面边长为,试将棱柱的高表示成的函数;(2)当取何值时,此正四棱柱的表面积最大,并求出最大值.21.为了了解某省各景区在大众中的熟知度,随机从本省岁的人群中抽取了人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家级旅游景区?”,统计结果如下表所示:组号分组回答正确的人数回答正确的人数占本组的频率第组第组第组第组第组(1)分别求出的值;(2)从第组回答正确的人中用分层抽样的方法抽取人,求第组每组抽取的人数;(3)在(2)中抽取的人中随机抽取人,求所抽取的人中恰好没有年龄段在的概率

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

求三棱锥的外接球的表面积即求球的半径,则球心到底面的距离为,根据正切和MA的长求PA,再和MA的长即可通过勾股定理求出球半径R,则表面积.【详解】取BC的中点E,连接AE(图略).因为,所以点M在AE上,因为,,所以,则的面积为,解得,所以.因为,所以.设的外接圆的半径为r,则,解得.因为平面ABC,所以三棱锥的外接球的半径为,故三棱锥P-ABC的外接球的表面积为.【点睛】此题关键点通过题干信息画出图像,平面ABC和底面的内切圆圆心确定球心的位置,根据几何关系求解即可,属于三棱锥求外接球半径基础题目.2、A【解析】

不等式等价转化为,当时,得,当时,得,由此根据解集中恰有3个整数解,能求出的取值范围。【详解】关于的不等式,不等式可变形为,当时,得,此时解集中的整数为2,3,4,则;当时,得,,此时解集中的整数为-2,-1,0,则故a的取值范围是,选:A。【点睛】本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对和1的大小进行分类讨论。其次在观察的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。3、C【解析】

将已知代入正弦定理可得,根据,由三角形中大边对大角可得:,即可求得.【详解】解:,,由正弦定理得:故选C.【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.4、A【解析】

利用向量的减法将3,进行分解,然后根据条件,进行对比即可得到结论【详解】∵3,∴33,即43,则,∵λ,∴λ,故选A.【点睛】本题主要考查向量的基本定理的应用,根据向量的减法法则进行分解是解决本题的关键.5、A【解析】

根据线面平行判定定理以及作截面逐个分析判断选择.【详解】A中,因为,所以可得平面,又,可得平面,从而平面平面B中,作截面可得平面平面(H为C1D1中点),如图:C中,作截面可得平面平面(H为C1D1中点),如图:D中,作截面可得为两相交直线,因此平面与平面不平行,如图:【点睛】本题考查线面平行判定定理以及截面,考查空间想象能力与基本判断论证能力,属中档题.6、B【解析】试题分析:中位数为中间的一个数或两个数的平均数,所以中位数为考点:茎叶图7、D【解析】圆的圆心坐标为,半径为1,∵直线与圆相切,∴圆心到直线的距离,即,解得,故选D.8、D【解析】

根据图象可得最小正周期,求得;利用零点和的符号可确定的取值;令,解不等式即可求得单调递减区间.【详解】由图象可知:又,,由图象可知的一个可能的取值为令,,解得:,即的单调递减区间为:,本题正确选项:【点睛】本题考查利用图象求解余弦型函数的解析式、余弦型函数单调区间的求解问题;关键是能够灵活应用整体对应的方式来求解解析式和单调区间,属于常考题型.9、C【解析】

由向量的坐标运算表示2a【详解】解:因为a=(1,-1),b=(-1,2故选C.【点睛】本题考查了向量的加法和数量积的坐标运算;属于基础题目.10、A【解析】

由直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,求出m=10,把(1,p)代入10x+4y﹣2=0,求出p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,能求出n.【详解】∵直线mx+4y﹣2=0与直线2x﹣5y+n=0垂直,垂足为(1,p),∴2m﹣4×5=0,解得m=10,把(1,p)代入10x+4y﹣2=0,得10+4p﹣2=0,解得p=﹣2,把(1,﹣2)代入2x﹣5y+n=0,得2+10+n=0,解得n=﹣1.故答案为:A【点睛】本题考查实数值的求法,考查直线与直线垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1.76【解析】

将这6位同学的身高按照从低到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.【考点】中位数的概念【点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.12、【解析】

设,根据条件可以求出,两边平方可以得到关系式,由余弦定理可以表示出,把代入得到的关系式,联立求出的值,过作垂直于,设,则可以表示,利用勾股定理,求出的值,确定长,即求出平行四边形的面积【详解】设又,由余弦定理将代入,得到将(2)代入(1)得到可以解得:(另一种情况不影响结果),过作垂直于,设,则,所以填写【点睛】几何题如果关系量理清不了,可以尝试作图,引入相邻边的参数,通过方程把参数求出,平行四边形问题可以通过转化变为三角形问题,进而把问题简单化.13、【解析】

设等差数列的公差为,根据已知条件列方程组解出和的值,可求出的表达式,再由可解出的值.【详解】设等差数列的公差为,由,得,解得,,,因此,,故答案为:.【点睛】本题考查等差数列的求和,对于等差数列的问题,通常建立关于首项和公差的方程组求解,考查方程思想,属于中等题.14、【解析】

由图乙可得:第行有个数,且第行最后的一个数为,从第三行开始每一行的数从左到右都是公差为的等差数列,注意到,,据此确定n的值即可.【详解】分析图乙,可得①第行有个数,则前行共有个数,②第行最后的一个数为,③从第三行开始每一行的数从左到右都是公差为的等差数列,又由,,则,则出现在第行,第行第一个数为,这行中第个数为,前行共有个数,则为第个数.故填.【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.15、【解析】根据三角函数恒等式,将代入得到,又因为,故得到故答案为。16、1【解析】

运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【详解】解:,可得周期,,则满足的的个数为.故答案为:1.【点睛】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)最大值为,最小值为【解析】

利用二倍角公式、两角和差正弦公式和辅助角公式可化简出;(1)令,解出的范围即为所求单调递增区间;(2)利用的范围可求得所处的范围,整体对应正弦函数图象可确定最大值和最小值取得时的值,进而求得最值.【详解】(1)令,,解得:,的单调递增区间为,(2)当时,当时,取得最大值,最大值为当时,取得最小值,最小值为【点睛】本题考查正弦型函数单调区间和最值的求解问题,涉及到利用两角和差公式、二倍角公式和辅助角公式化简三角函数;关键是能够灵活应用整体对应的方式,结合正弦函数的图象与性质来进行求解.18、(1);(2)1【解析】

(1)取中点,连接,即为所求角。在中,易得MC,NC的长,MN可在直角三角形中求得。再用余弦定理易求得夹角。(2)连接,连接和交于点,连接,易得,所以为的中位线,所以为中点,所以的值为1。【详解】(1)取中点,连接因为为矩形,分别为中点,所以所以异面直线与所成角就是与所成的锐角或直角因为平面平面,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圆周上点,且,所以中,,由余弦定理可求得所以异面直线与所成角的余弦值为(2)连接,连接和交于点,连接因为直线平面,直线平面,平面平面所以矩形的对角线交点为中点所以为的中位线,所以为中点又,所以的值为1【点睛】(1)异面直线所成夹角一般是要平移到一个平面。(2)通过几何关系确定未知点的位置,再求解线段长即可。19、(1);(2);(3).【解析】

(1)恰有一支一等品,从3支一等品中任取一支,从二、三等品种任取两支利用分布乘法原理计算后除以基本事件总数;(2)恰有两枝一等品,从3支一等品中任取两支,从二、三等品种任取一支利用分布乘法原理计算后除以基本事件总数;(3)从5支非三等品中任取三支除以基本事件总数.【详解】(1)恰有一枝一等品的概率;(2)恰有两枝一等品的概率;(3)没有三等品的概率.【点睛】本题考查古典概型及其概率计算公式,考查逻辑思维能力和运算能力,属于常考题.20、(1);(2)正四棱柱的底面边长为时,正四棱柱的表面积最大值为48.【解析】试题分析:(1)根据比例关系式求出关于的解析式即可;(2)设该正四棱柱的表面积为,得到关系式,根据二次函数的性质求出的最大值即可.试题解析:(1)根据相似性可得:,解得:;(2)设该正四棱柱的表面积为.则有关系式,因为,所以当时,,故当正四棱柱的底面边长为时,正四棱柱的表面积最大值为.点睛:本题考查了数形结合思想,考查二次函数的性质以及求函数的最值问题,是一道中档

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论