2025届湖南省邵阳市新邵县高一下数学期末综合测试试题含解析_第1页
2025届湖南省邵阳市新邵县高一下数学期末综合测试试题含解析_第2页
2025届湖南省邵阳市新邵县高一下数学期末综合测试试题含解析_第3页
2025届湖南省邵阳市新邵县高一下数学期末综合测试试题含解析_第4页
2025届湖南省邵阳市新邵县高一下数学期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省邵阳市新邵县高一下数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点在正所确定的平面上,且满足,则的面积与的面积之比为()A. B. C. D.2.如图,扇形的圆心角为,半径为1,则该扇形绕所在直线旋转一周得到的几何体的表面积为(

)A. B. C. D.3.已知都是正数,且,则的最小值等于A. B.C. D.4.从A,B,C三个同学中选2名代表,则A被选中的概率为()A. B. C. D.5.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.6.已知m、n、a、b为空间四条不同直线,α、β、为不同的平面,则下列命题正确的是().A.若,,则B.若,,则C.若,,,则D.若,,,则7.若是异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交8.为奇函数,当时,则时,A. B.C. D.9.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面10.设向量,,则向量与的夹角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列,的前项和分别为,,若,则______.12.三棱锥P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,侧面PAB是等边三角形且与底面ABC垂直,则该三棱锥的外接球表面积为_____.13.我国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天走的路程为__________里.14.已知扇形的半径为6,圆心角为,则该扇形的面积为_______.15.函数在的值域是______________.16.不等式的解集是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.内角的对边分别为,已知.(1)求;(2)若,,求的面积.18.已知,,(1)若,求;(2)求的最大值,并求出对应的x的值.19.正项数列:,满足:是公差为的等差数列,是公比为2的等比数列.(1)若,求数列的所有项的和;(2)若,求的最大值;(3)是否存在正整数,满足?若存在,求出的值;若不存在,请说明理由.20.将函数的图象向右平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,可以得到函数的图象.(1)求函数的单调递增区间;(2)若,,求值.21.在中,内角A,B,C的对边分别是ɑ,b,c,已知,.(1)求角C;(2)求面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据向量满足的条件确定出P点的位置,再根据三角形有相同的底边,确定高的比即可求出结果.【详解】因为,所以,即点在边上,且,所以点到的距离等于点到距离的,故的面积与的面积之比为.选C.【点睛】本题主要考查了向量的线性运算,三角形的面积,属于中档题.2、C【解析】

以所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,利用球面的表面积公式及圆的表面积公式即可求得.【详解】由已知可得:以所在直线为旋转轴将整个图形旋转一周所得几何体是一个半球,其中半球的半径为1,故半球的表面积为:故答案为:C【点睛】本题主要考查了旋转体的概念,以及球的表面积的计算,其中解答中熟记旋转体的定义,以及球的表面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解析】

,故选C.4、D【解析】

先求出基本事件总数,被选中包含的基本事件个数,由此能求出被选中的概率.【详解】从,,三个同学中选2名代表,基本事件总数为:,共个,被选中包含的基本事件为:,共2个,被选中的概率.故选:D.【点睛】本题考查概率的求法,考查列举法和运算求解能力,是基础题.5、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.6、D【解析】

根据空间中直线与平面、平面与平面位置关系及其性质,即可判断各选项.【详解】对于A,,,只有当与平面α、β的交线垂直时,成立,当与平面α、β的交线不垂直时,不成立,所以A错误;对于B,,,则或,所以B错误;对于C,,,,由面面平行性质可知,或a、b为异面直线,所以C错误;对于D,若,,,由线面垂直与线面平行性质可知,成立,所以D正确.故选:D.【点睛】本题考查了空间中直线与平面、平面与平面位置关系的性质与判定,对空间想象能力要求较高,属于基础题.7、D【解析】

若为异面直线,且直线,则与可能相交,也可能异面,但是与不能平行,若,则,与已知矛盾,选项、、不正确故选.8、C【解析】

利用奇函数的定义,结合反三角函数,即可得出结论.【详解】又,时,,故选:C.【点睛】本题考查奇函数的定义、反三角函数,考查学生的计算能力,属于中档题.9、C【解析】

对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.10、C【解析】

由条件有,利用公式可求夹角.【详解】,.又又向量与的夹角的范围是向量与的夹角为.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用等差数列的性质以及等差数列奇数项之和与中间项的关系进行化简求解.【详解】因为是等差数列,所以,又因为为等差数列,所以,故.【点睛】(1)在等差数列中,若,则有;(2)在等差数列.12、【解析】

求出的外接圆半径,的外接圆半径,求出外接球的半径,即可求出该三棱锥的外接球的表面积.【详解】由题意,设的外心为,的外心为,则的外接圆半径,在中,因为,由余弦定理可得,所以,所以的外接圆半径,在等边中,由,所以,所以,设球心为,球的半径为,则,又由面,面,则,所以该三棱锥的外接球的表面积为.故答案为:.【点睛】本题主要考查了三棱锥的外接球的表面积的求解,其中解答中熟练应用空间几何体的结构特征,确定球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.13、192【解析】设每天走的路程里数为由题意知是公比为的等比数列∵∴∴故答案为14、【解析】

用弧度制表示出圆心角,然后根据扇形面积公式计算出扇形的面积.【详解】圆心角为对应的弧度为,所以扇形的面积为.故答案为:【点睛】本小题主要考查角度制和弧度制互化,考查扇形面积的计算,属于基础题.15、【解析】

利用,即可得出.【详解】解:由已知,,又

故答案为:.【点睛】本题考查了反三角函数的求值、单调性,考查了推理能力与计算能力,属于中档题.16、【解析】

且,然后解一元二次不等式可得解集.【详解】解:,∴且,或,不等式的解集为,故答案为:.【点睛】本题主要考查分式不等式的解法,关键是将分式不等式转化为其等价形式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)应用正弦的二倍角公式结合正弦定理可得,从而得.(2)用余弦定理求得,再由三角形面积公式可得三角形面积.【详解】(1)因为,由正弦定理,因为,,所以.因为,所以.(2)因为,,,由余弦定理得,解得或,均适合题.当时,的面积为.当时,的面积为.【点睛】本题考查二倍角公式,正弦定理,余弦定理,考查三角形面积公式.三角形中可用公式很多,关键是确定先用哪个公式,再用哪个公式,象本题第(2)小题选用余弦定理求出,然后可直接求出三角形面积,解法简捷.18、(Ⅰ)(II)1,此时【解析】

(Ⅰ)根据平面向量的坐标运算,利用平行公式求出tanx的值;(Ⅱ)利用平面向量的坐标运算,利用模长公式和三角函数求出最大值.【详解】解:(Ⅰ)计算-=(3,4),由∥(-)得4cosx-3sinx=0,∴tanx==;(Ⅱ)+=(cosx+1,sinx),∴=(cosx+1)1+sin1x=1+1cosx,|+|=,当cosx=1,即x=1kπ,k∈Z时,|+|取得最大值为1.【点睛】本题考查了平面向量的坐标运算与数量积运算问题,是基础题.19、(1)84;(2)1033;(3)存在,【解析】

(1)由题意可得:,即为:2,4,6,8,10,12,14,16,8,4;可得的值;(2)由题意可得,故有;即,即必是2的整数幂,要最大,必需最大,,可得出的最大值;(3)由是公差为的等差数列,是公比为2的等比数列,可得与,可得k与m的方程,一一验算k的值可得答案.【详解】解:(1)由已知,故为:2,4,6,8,10,12,14,16;公比为2,则对应的数为2,4,8,16,从而即为:2,4,6,8,10,12,14,16,8,4;此时(2)是首项为2,公差为2的等差数列,故,从而,而首项为2,公比为2的等比数列且,故有;即,即必是2的整数幂又,要最大,必需最大,,故的最大值为,所以,即的最大值为1033(3)由数列是公差为的等差数列知,,而是公比为2的等比数列,则,故,即,又,,则,即,则,即显然,则,所以,将,代入验证知,当时,上式右端为8,等式成立,此时,综上可得:当且仅当时,存在满足等式【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列、等比数列前n项的和,属于难题,注意灵活运用各公式解题与运算准确.20、(1);(2)【解析】

(1)由的横坐标缩小为原来的,向左平移个单位长度,可得函数,令,解不等式即可求得本题答案;(2)由,可得,又由,即可得到本题答案.【详解】解:(1)由题意,得令,解得所以,函数的单调递增区间为:(2),,又,得,由,得,.【点睛】本题主要考查三角函数的伸缩平移,三角函数的图象与性质以及利用和差公式求值.21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论