




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市培佳双语学校2025届数学高一下期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在直三棱柱(侧棱垂直于底面)中,若,,,则其外接球的表面积为()A. B. C. D.2.在中,三个内角成等差数列是的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件3.向量,,且,则等于()A. B. C.2 D.104.设函数是定义在上的奇函数,当时,,则()A.-4 B. C. D.5.若点,直线过点且与线段相交,则的斜率的取值范围是()A.或B.或C.D.6.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数.例如:,,已知函数,则函数的值域为()A. B. C. D.7.以下有四个说法:①若、为互斥事件,则;②在中,,则;③和的最大公约数是;④周长为的扇形,其面积的最大值为;其中说法正确的个数是()A. B.C. D.8.设长方体的长、宽、高分别为2,1,1,其顶点都在同一个球面上,则该球的表面积为()A. B. C. D.9.已知向量,,,且,则实数的值为A. B. C. D.10.《九章算术》中的玉石问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(即176两),问玉、石重各几何?”其意思为:“宝玉1立方寸重7两,石料1立方寸重6两,现有宝石和石料混合在一起的一个正方体,棱长是3寸,质量是11斤(即176两),问这个正方体中的宝玉和石料各多少两?”如图所示的程序框图给出了对此题的一个求解算法,运行该程序框图,则输出的分别为()A.90,86 B.98,78 C.94,82 D.102,74二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量(1,x2),(﹣2,y2﹣2),若向量,共线,则xy的最大值为_____.12.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.13.设函数f(x)是定义在R上的偶函数,且对称轴为x=1,已知当x∈[0,1]时,f(x)=121-x,则有下列结论:①2是函数fx的周期;②函数fx在1,2上递减,在2,3上递增;③函数f14.已知等比数列中,,,则该等比数列的公比的值是______.15.在等腰中,为底边的中点,为的中点,直线与边交于点,若,则___________.16.已知函数,该函数零点的个数为_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知△ABC的顶点A4,3,AB边上的高所在直线为x-y-3=0,D为AC中点,且BD所在直线方程为3x+y-7=0(1)求顶点B的坐标;(2)求BC边所在的直线方程。18.如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:;(2)若,,,试画出二面角的平面角,并求它的余弦值.19.某电子科技公司由于产品采用最新技术,销售额不断增长,最近个季度的销售额数据统计如下表(其中表示年第一季度,以此类推):季度季度编号x销售额y(百万元)(1)公司市场部从中任选个季度的数据进行对比分析,求这个季度的销售额都超过千万元的概率;(2)求关于的线性回归方程,并预测该公司的销售额.附:线性回归方程:其中,参考数据:.20.在公差不为零的等差数列中,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,设数列的前项和,求证.21.在中,分别为角所对应的边,已知,,求的长度.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据题意,将直三棱柱扩充为长方体,其体对角线为其外接球的直径,可得半径,即可求出外接球的表面积.【详解】∵,,∠ABC=90∘,∴将直三棱柱扩充为长、宽、高为2、2、3的长方体,其体对角线为其外接球的直径,长度为,∴其外接球的半径为,表面积为=17π.故选:A.【点睛】本题考查几何体外接球,通常将几何体进行割补成长方体,几何体外接球等同于长方体外接球,利用长方体外接球直径等于体对角线长求出半径,再求出球的体积和表面积即可,属于简单题.2、B【解析】
根据充分条件和必要条件的定义结合等差数列的性质进行求解即可.【详解】在△ABC中,三个内角成等差数列,可能是A,C,B成等差数列,则A+B=2C,则C=60°,不一定满足反之若B=60°,则A+C=120°=2B,则A、B、C成等差数列,∴三个内角成等差数列是的必要非充分条件,故选:B.【点睛】本题主要考查充分条件和必要条件的判断,考查了等差中项的应用,属于基础题.3、B【解析】
先由数量积为,得出,求出的坐标,利用模长的坐标公式求解即可.【详解】由题意可得,则则故选:B【点睛】本题主要考查了向量模的坐标表示以及向量垂直的坐标表示,属于基础题.4、A【解析】
由奇函数的性质可得:即可求出【详解】因为是定义在上的奇函数,所以又因为当时,,所以,所以,选A.【点睛】本题主要考查了函数的性质中的奇偶性。其中奇函数主要有以下几点性质:1、图形关于原点对称。2、在定义域上满足。3、若定义域包含0,一定有。5、C【解析】试题分析:画出三点坐标可知,两个边界值为和,数形结合可知为.考点:1.相交直线;2.数形结合的方法;6、D【解析】
分离常数法化简f(x),根据新定义即可求得函数y=[f(x)]的值域.【详解】,又>0,∴,∴∴当x∈(1,1)时,y=[f(x)]=1;当x∈[1,)时,y=[f(x)]=1.∴函数y=[f(x)]的值域是{1,1}.故选D.【点睛】本题考查了新定义的理解和应用,考查了分离常数法求一次分式函数的值域,是中档题.7、C【解析】
设、为对立事件可得出命题①的正误;利用大边对大角定理和余弦函数在上的单调性可判断出命题②的正误;列出和各自的约数,可找出两个数的最大公约数,从而可判断出命题③的正误;设扇形的半径为,再利用基本不等式可得出扇形面积的最大值,从而判断出命题④的正误.【详解】对于命题①,若、为对立事件,则、互斥,则,命题①错误;对于命题②,由大边对大角定理知,,且,函数在上单调递减,所以,,命题②正确;对于命题③,的约数有、、、、、,的约数有、、、、、、、,则和的最大公约数是,命题③正确;对于命题④,设扇形的半径为,则扇形的弧长为,扇形的面积为,由基本不等式得,当且仅当,即当时,等号成立,所以,扇形面积的最大值为,命题④错误.故选C.【点睛】本题考查命题真假的判断,涉及互斥事件的概率、三角形边角关系、公约数以及扇形面积的最值,判断时要结合这些知识点的基本概念来理解,考查推理能力,属于中等题.8、B【解析】
先求出长方体的对角线的长度,即得外接球的直径,再求球的表面积得解.【详解】由题得长方体外接球的直径.故选:B【点睛】本题主要考查长方体的外接球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9、A【解析】
求出的坐标,由得,得到关于的方程.【详解】,,因为,所以,故选A.【点睛】本题考查向量减法和数量积的坐标运算,考查运算求解能力.10、B【解析】(1);(2);(3);(4),输出分别为98,78。故选B。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意利用两个向量共线的性质,两个向量坐标形式的运算,可得,再利用基本不等式,求得的最大值.【详解】向量,,若向量,共线,则,,即,当且仅当,时,取等号.故的最大值为,故答案为:.【点睛】本题主要考查两个向量共线的性质,考查两个向量坐标形式的运算和基本不等式,属于基础题.12、4【解析】
由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.13、①②④【解析】
依据题意作出函数f(x)的图像,通过图像可以判断以下结论是否正确。【详解】作出函数f(x)的图像,由图像可知2是函数fx的周期,函数fx在1,2上递减,在2,3上递增,函数当x∈3,4时,f(x)=f(x-4)=f(4-x)=故正确的结论有①②④。【点睛】本题主要考查函数的图像与性质以及数形结合思想,意在考查学生的逻辑推理能力。14、【解析】
根据等比通项公式即可求解【详解】故答案为:【点睛】本题考查等比数列公比的求解,属于基础题15、;【解析】
题中已知等腰中,为底边的中点,不妨于为轴,垂直平分线为轴建立直角坐标系,这样,我们能求出点坐标,根据直线与求出交点,求向量的数量积即可.【详解】如上图,建立直角坐标系,我们可以得出直线,联立方程求出,,即填写【点睛】本题中因为已知底边及高的长度,所有我们建立直角坐标系,求出相应点坐标,而作为F点的坐标我们可以通过直线交点求出,把向量数量积通过向量坐标运算来的更加直观.16、3【解析】
令,可得或;当时,可解得为函数一个零点;当时,可知,根据的范围可求得零点;综合两种情况可得零点总个数.【详解】令,可得:或当时,或(舍)为函数的一个零点当时,,,为函数的零点综上所述,该函数的零点个数为:个本题正确结果:【点睛】本题考查函数零点个数的求解,关键是能够将问题转化为方程根的个数的求解,涉及到余弦函数零点的求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)B(0,7)(2)19x+y-7=0【解析】
(1)联立直线AB,BD的方程,求出点B坐标;(2)求出点C12,-52,利用B,C【详解】由A(4,3)及AB边上的高所在直线为x-y-3=0,得AB所在直线方程为x+y-7=0又BD所在直线方程为3x+y-7=0由3x+y-7=0x+y-7=0,得B(0,7)(2)设C(m,n),又A(4,3),D为AC中点,则Dm+4由已知得3×m+42+又B(0,7)得直线BC的方程为19x+y-7=0.【点睛】考查直线的垂直关系、直线的交点坐标、直线方程的求法等,考查运算求解能力.18、(1)见证明;(2)二面角图见解析;【解析】
(1)由菱形的性质得出,由平面,得出,再利用直线与平面垂直的判定定理证明平面,于是得出;(2)过点在平面内作,垂足为点,连接,可证出平面,于是找出二面角的平面角为,并计算出的三边边长,利用锐角三角函数计算出,即为所求答案.【详解】(1)连接,因为侧面为菱形,所以,且与相交于点.因为平面,平面,所以.又,所以平面因为平面,所以.(2)作,垂足为,连结,因为,,,所以平面,又平面,所以.所以是二面角的平面角.因为,所以为等边三角形,又,所以,所以.因为,所以.所以.在中,.【点睛】本题考查直线与直线垂直的证明,二面角的求解,在这些问题的处理中,主要找出一些垂直关系,二面角的求解一般有以下几种方法:①定义法;②三垂线法;③垂面法;④射影面积法;⑤空间向量法.在求解时,可以灵活利用这些方法去处理.19、(1);(2)关于的线性回归方程为,预测该公司的销售额为百万元.【解析】
(1)列举出所有的基本事件,并确定事件“这个季度的销售额都超过千万元”然后利用古典概型的概率公式可计算出所求事件的概率;(2)计算出和的值,然后将表格中的数据代入最小二乘法公式,计算出和的值,可得出关于的线性回归方程,然后将代入回归直线方程即可得出该公司的销售额的估计值.【详解】(1)从个季度的数据中任选个季度,这个季度的销售额有种情况:、、、、、、、、、设“这个季度的销售额都超过千万元”为事件,事件包含、、,种情况,所以;(2),,,.所以关于的线性回归方程为,令,得(百万元)所以预测该公司的销售额为百万元.【点睛】本题考查利用古典概型的概率公式计算事件的概率,同时也考查了利用最小二乘法求回归直线方程,同时也考查了回归直线方程的应用,考查计算能力,属于中等题.20、(Ⅰ)(Ⅱ)见解析【解析】
(Ⅰ)根据题意列出方程组,利用等差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社保转移协议书范本
- 专业市场摊位租赁及品牌入驻扶持协议
- 餐饮店品牌连锁承包经营合同
- 水母鱼池转让协议书范本
- 高新技术产业拆伙协议
- 力工拆墙协议书范本
- 荒废鱼塘征用协议书范本
- 高端代驾服务免责协议模板
- 绿色金融项目借款合同范例
- 水文测量员聘请与技术支持服务合同范本
- 3地质勘查项目预算标准
- 胆汁与胆汁酸的代谢培训课件
- 高等数学期末复习题
- 新概念二英文课文字帖衡水体4Blesson2548
- 蜡笔小新优质获奖课件
- 油罐车驾驶员日常考核细则
- 各级医疗机构医院分级诊疗18个常见病分级诊疗流程(2023年版)
- 测控电路复习题及答案
- BEC商务英语中级考试阅读真题
- 单元体吊装方案优质资料
- 安霸A12-凌度A12行车记录仪使用说明书
评论
0/150
提交评论