湖南省五市十校2025届高一数学第二学期期末综合测试试题含解析_第1页
湖南省五市十校2025届高一数学第二学期期末综合测试试题含解析_第2页
湖南省五市十校2025届高一数学第二学期期末综合测试试题含解析_第3页
湖南省五市十校2025届高一数学第二学期期末综合测试试题含解析_第4页
湖南省五市十校2025届高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省五市十校2025届高一数学第二学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角A,B,C的对边分别为a,b,c,若,则角=()A. B. C. D.2.某三棱柱的底面是边长为2的正三角形,高为6,则该三棱柱的体积为A. B. C. D.3.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步并不难,次日脚痛减一半,六朝才得至其关,欲问每朝行里数,请公仔细算相还”.其意思为:“有一个人走378里路,第1天健步行走,从第2天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,可求出此人每天走多少里路.”那么此人第5天走的路程为()A.48里 B.24里 C.12里 D.6里4.等比数列中,,则A.20 B.16 C.15 D.105.已知是非零向量,若,且,则与的夹角为()A. B. C. D.6.已知角、是的内角,则“”是“”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件7.下列说法正确的是()A.命题“若,则.”的否命题是“若,则.”B.是函数在定义域上单调递增的充分不必要条件C.D.若命题,则8.圆关于直线对称,则的值是()A. B. C. D.9.命题“”的否定是()A., B.,C., D.,10.一个四面体的三视图如图所示,则该四面体的表面积是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前项和为,若,则=_______12.给出以下四个结论:①平行于同一直线的两条直线互相平行;②垂直于同一平面的两个平面互相平行;③若,是两个平面;,是异面直线;且,,,,则;④若三棱锥中,,,则点在平面内的射影是的垂心;其中错误结论的序号为__________.(要求填上所有错误结论的序号)13.若两个正实数满足,且不等式有解,则实数的取值范围是____________.14.若正实数,满足,则的最小值是________.15.函数的最小正周期是________.16.函数的定义域为A,若时总有为单函数.例如,函数=2x+1()是单函数.下列命题:①函数=(xR)是单函数;②若为单函数,且则;③若f:AB为单函数,则对于任意bB,它至多有一个原象;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中的真命题是.(写出所有真命题的编号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中.(1)若函数在区间内有一个零点,求的取值范围;(2)若函数在区间上的最大值与最小值之差为2,且,求的取值范围.18.设等比数列的前n项和为.已知,,求和.19.某制造商月生产了一批乒乓球,随机抽样个进行检查,测得每个球的直径(单位:mm),将数据分组如下表分组频数频率10205020合计100(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).20.已知的顶点都在单位圆上,角的对边分别为,且.(1)求的值;(2)若,求的面积.21.设函数.(1)已知图象的相邻两条对称轴的距离为,求正数的值;(2)已知函数在区间上是增函数,求正数的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由正弦定理可解得,利用大边对大角可得范围,从而解得A的值.【详解】,由正弦定理可得:,,由大边对大角可得:,解得:.故选A.【点睛】本题主要考查了正弦定理,大边对大角,正弦函数的图象和性质等知识的应用,解题时要注意分析角的范围.2、C【解析】

计算结果.【详解】因为底面是边长为2的正三角形,所以底面的面积为,则该三棱柱的体积为.【点睛】本题考查了棱柱的体积公式,属于简单题型.3、C【解析】记每天走的路程里数为{an},由题意知{an}是公比的等比数列,由S6=378,得=378,解得:a1=192,∴=12(里).故选C.4、B【解析】试题分析:由等比中项的性质可得:,故选择B考点:等比中项的性质5、D【解析】

由得,这样可把且表示出来.【详解】∵,∴,,∴,∴,故选D.【点睛】本题考查向量的数量积,掌握数量积的定义是解题关键.6、C【解析】

结合正弦定理,利用充分条件和必要条件的定义进行判断【详解】在三角形中,根据大边对大角原则,若,则,由正弦定理得,充分条件成立;若,由可得,根据大边对大角原则,则,必要条件成立;故在三角形中,“”是“”的充要条件故选:C【点睛】本题考查充分条件与必要条件的应用,利用正弦定理确定边角关系,三角形大边对大角原则应谨记,属于基础题7、D【解析】“若p则q”的否命题是“若则”,所以A错。在定义上并不是单调递增函数,所以B错。不存在,C错。全称性命题的否定是特称性命题,D对,选D.8、B【解析】圆关于直线对称,所以圆心(1,1)在直线上,得.故选B.9、B【解析】

含有一个量词的命题的否定,注意“改量词,否结论”.【详解】改为,改成,则有:.故选:B.【点睛】本题考查含一个量词的命题的否定,难度较易.10、B【解析】

试题分析:由三视图可知,该几何体是如下图所示的三棱锥,其中平面平面,,且,,所以,与均为正三角形,且边长为,所以,故该三棱锥的表面各为,故选B.考点:1.三视图;2.多面体的表面积与体积.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用等差数列前项和,可得;利用等差数列的性质可得,然后求解三角函数值即可.【详解】等差数列的前项和为,因为,所以;又,所以.故答案为:.【点睛】本题考查等差数列的前项和公式和等差数列的性质的应用,熟练掌握和若,则是解题的关键.12、②【解析】

③①可由课本推论知正确;②可举反例;④可进行证明.【详解】命题①平行于同一直线的两条直线互相平行,由课本推论知是正确的;②垂直于同一平面的两个平面互相平行,是错误的,例如正方体的上底面,前面和右侧面,是互相垂直的关系;③根据课本推论知结论正确;④若三棱锥中,,,则点在平面内的射影是的垂心这一结论是正确的;作出B在底面的射影O,连结AO,DO,则,同理,,进而得到O为三角形的垂心.

故答案为②【点睛】这个题目考查了命题真假的判断,一般这类题目可以通过课本的性质或者结论进行判断;也可以通过举反例来解决这个问题.13、【解析】试题分析:因为不等式有解,所以,因为,且,所以,当且仅当,即时,等号是成立的,所以,所以,即,解得或.考点:不等式的有解问题和基本不等式的求最值.【方法点晴】本题主要考查了基本不等式在最值中的应用,不等式的有解问题,在应用基本不等式求解最值时,呀注意“一正、二定、三相等”的判断,运用基本不等式解题的关键是寻找和为定值或是积为定值,难点在于如何合理正确的构造出定值,对于不等式的有解问题一般选用参数分离法,转化为函数的最值或借助数形结合法求解,属于中档试题.14、【解析】

将配凑成,由此化简的表达式,并利用基本不等式求得最小值.【详解】由得,所以.当且仅当,即时等号成立.故填:.【点睛】本小题主要考查利用基本不等式求和式的最小值,考查化归与转化的数学思想方法,属于中档题.15、【解析】

根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为【点睛】本题主要考查了正切函数周期公式的应用,属于基础题.16、②③【解析】

命题①:对于函数,设,故和可能相等,也可能互为相反数,即命题①错误;命题②:假设,因为函为单函数,所以,与已知矛盾,故,即命题②正确;命题③:若为单函数,则对于任意,,假设不只有一个原象与其对应,设为,则,根据单函数定义,,又因为原象中元素不重复,故函数至多有一个原象,即命题③正确;命题④:函数在某区间上具有单调性,并不意味着在整个定义域上具有单调性,即命题④错误,综上可知,真命题为②③.故答案为②③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)解方程的根,则根在区间内,即可求出的范围即可;(2)根据函数的单调性求出最大,最小,作差得,从而得到关于的不等式,解出即可.【详解】(1)由,得,由得:,所以的范围是.(2)在递增,,,,,由,得,,解得:.【点睛】本题考查对数函数的性质、函数的单调性、最值等问题,考查转化与化归思想,求解过程中要会灵活运用换元法进行问题解决.18、或.【解析】

试题解析:(1)解得或即或(2)当时,当时,考点:本题考查求通项及求和点评:解决本题的关键是利用基本量法解题19、(1)见解析;(2)40.00(mm)【解析】解:(1)频率分布表如下:分组

频数

频率

[39.95,39.97)

10

0.10

5

[39.97,39.99)

20

0.20

10

[39.99,40.01)

50

0.50

25

[40.01,40.03]

20

0.20

10

合计

100

1

注:频率分布表可不要最后一列,这里列出,只是为画频率分布直方图方便.频率分布直方图如下:(2)整体数据的平均值约为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20≈40.00(mm).20、(1);(2)【解析】分析:(1)由正弦定理,两角和的正弦函数公式化简已知可得,又,即可求得的值;(2)由同角三角函数基本关系式可求的值,由于的顶点都在单位圆上,利用正弦定理可得,可求,利用余弦定理可得的值,利用三角形面积公式即可得解.详解:(1)∵,由正弦定理得:,,又∵,,∴,所以.(2)由得,,因为的顶点在单位圆上,所以,所以,由余弦定理,..点睛:本题主要考查了正弦定理、两角和的正弦函数公式、同角三角函数基本关系式、余弦定理、三角形面积公式在解三角形中的应用,熟练掌握相关公式是解题的关键,考查了转化思想和数形结合思想的应用,属于中档题.21、(1)1;(2).【解析】

(1)由二倍角公式可化函数为,结合正弦函数的性质可得;(2)先求得的增区间,其中,此区间应包含,这样可得之

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论