版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省赣州三中高一数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知分别为内角的对边,若,b=则=()A. B. C. D.2.某校进行了一次消防安全知识竞赛,参赛学生的得分经统计得到如图的频率分布直方图,若得分在的有60人,则参赛学生的总人数为()A.100 B.120 C.150 D.2003.已知点,,则直线的斜率是()A. B. C.5 D.14.在等差数列中,若,则()A.10 B.15 C.20 D.255.计算:A. B. C. D.6.已知,,,则实数、、的大小关系是()A. B.C. D.7.已知函数,若使得在区间上为增函数的整数有且仅有一个,则实数的取值范围是()A. B. C. D.8.已知数列的前4项依次为,1,,,则该数列的一个通项公式可以是()A. B.C. D.9.已知圆经过点,且圆心为,则圆的方程为A. B.C. D.10.若a<b<0,则下列不等式关系中,不能成立的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,若,则的前13项之和等于______.12.已知a,b为常数,若,则______;13.甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为_________.14.若点为圆的弦的中点,则弦所在的直线的方程为___________.15.某地甲乙丙三所学校举行高三联考,三所学校参加联考的人数分别为200、300、400。现为了调查联考数学学科的成绩,采用分层抽样的方法在这三所学校中抽取一个样本,已知甲学校中抽取了40名学生的数学成绩,那么在丙学校中抽取的数学成绩人数为_________。16.不等式的解集是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某快递小哥从地出发,沿小路以平均速度为20公里小时送快件到处,已知公里,,是等腰三角形,.(1)试问,快递小哥能否在50分钟内将快件送到处?(2)快递小哥出发15分钟后,快递公司发现快件有重大问题,由于通讯不畅,公司只能派车沿大路追赶,若汽车的平均速度为60公里小时,问,汽车能否先到达处?18.已知函数.(1)求的最小正周期;(2)若,求当时自变量的取值集合.19.如图,等边所在的平面与菱形所在的平面垂直,分别是的中点.(1)求证:平面;(2)若,,求三棱锥的体积20.已知(1)求的值;(2)求的最小值以及取得最小值时的值21.如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=1.E为PD的中点,点F在PC上,且.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)求二面角F–AE–P的余弦值;(Ⅲ)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由已知利用正弦定理可求的值,根据余弦定理可得,解方程可得的值.【详解】,,,由正弦定理,可得:,由余弦定理,可得:,解得:,负值舍去.故选.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了方程思想,属于基础题.2、C【解析】
根据频率分布直方图求出得分在的频率,即可得解.【详解】根据频率分布直方图可得:得分在的频率0.35,得分在的频率0.3,得分在的频率0.2,得分在的频率0.1,所以得分在的频率0.05,得分在的频率为0.4,有60人,所以参赛学生的总人数为60÷0.4=150人.故选:C【点睛】此题考查根据频率分布直方图求某组的频率,根据频率分布直方图的特征计算小矩形的面积,根据总面积之和为1计算未知数,结合频率频数计算总人数.3、D【解析】
根据直线的斜率公式,准确计算,即可求解,得到答案.【详解】由题意,根据直线的斜率公式,可得直线的斜率,故选D.【点睛】本题主要考查了直线的斜率公式的应用,其中解答中熟记直线的斜率公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.4、C【解析】
设等差数列的公差为,得到,又由,代入即可求解,得到答案.【详解】由题意,设等差数列的公差为,则,又由,故选C.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中熟记等差数列的通项公式,准确计算是解答的关键,着重考查了计算与求解能力,属于基础题,.5、A【解析】
根据正弦余弦的二倍角公式化简求解.【详解】,故选A.【点睛】本题考查三角函数的恒等变化,关键在于寻找题目与公式的联系.6、B【解析】
将bc化简为最简形式,再利用单调性比较大小。【详解】因为在单调递增所以【点睛】本题考查利用的单调性判断大小,属于基础题。7、A【解析】
根据在区间上为增函数的整数有且仅有一个,结合正弦函数的单调性,即可求得答案.【详解】,使得在区间上为增函数可得当时,满足整数至少有,舍去当时,,要使整数有且仅有一个,须,解得:实数的取值范围是.故选:A.【点睛】本题主要考查了根据三角函数在某区间上单调求参数值,解题关键是掌握正弦型三角函数单调区间的解法和结合三角函数图象求参数范围,考查了分析能力和计算能力,属于难题.8、A【解析】
根据各选择项求出数列的首项,第二项,用排除法确定.【详解】可用排除法,由数列项的正负可排除B,D,再看项的绝对值,在C中不合题意,排除C,只有A.可选.故选:A.【点睛】本题考查数列的通项公式,已知数列的前几项,选择一个通项公式,比较方便,可以利用通项公式求出数列的前几项,把不合的排除即得.9、D【解析】
先计算圆半径,然后得到圆方程.【详解】因为圆经过,且圆心为所以圆的半径为,则圆的方程为.故答案选D【点睛】本题考查了圆方程,先计算半径是解题的关键.10、B【解析】
根据的单调性,可知成立,不成立;根据和的单调性,可知成立.【详解】在上单调递减,成立又,不成立在上单调递增,成立在上单调递减,成立故选:【点睛】本题考查利用函数单调性比较大小的问题,关键是能够建立起合适的函数模型,根据自变量的大小关系,结合单调性得到结果.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意,以及等差数列的性质,先得到,再由等差数列的求和公式,即可求出结果.【详解】因为是等差数列,,所以,即,记前项和为,则.故答案为:【点睛】本题主要考查等差数列前项和的基本量的运算,熟记等差数列的性质以及求和公式即可,属于基础题型.12、2【解析】
根据极限存在首先判断出的值,然后根据极限的值计算出的值,由此可计算出的值.【详解】因为,所以,又因为,所以,所以.故答案为:.【点睛】本题考查根据极限的值求解参数,难度较易.13、【解析】
利用古典概型的概率求解.【详解】甲、乙两人选择交通工具总的选择有种,他们选择相同交通工具有3种情况,所以他们选择相同交通工具的概率为.故答案为:.【点睛】本题考查古典概型,要用计数原理进行计数,属于基础题.14、;【解析】
利用垂径定理,即圆心与弦中点连线垂直于弦.【详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【点睛】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).15、80【解析】
由题意,求得甲乙丙三所学校抽样比为,再根据甲学校中抽取了40名学生的数学成绩,即可求解丙学校应抽取的人数,得到答案.【详解】由题意知,甲乙丙三所学校参加联考的人数分别为200、300、400,所以甲乙丙三所学校抽样比为,又由甲学校中抽取了40名学生的数学成绩,所以在丙学校应抽取人.【点睛】本题主要考查了分层抽样概念及其应用,其中解答中熟记分层抽样的概念,以及计算的方法是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】
且,然后解一元二次不等式可得解集.【详解】解:,∴且,或,不等式的解集为,故答案为:.【点睛】本题主要考查分式不等式的解法,关键是将分式不等式转化为其等价形式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)快递小哥不能在50分钟内将快件送到处.(2)汽车能先到达处.【解析】试题分析:(1)由题意结合图形,根据正弦定理可得,,求得的长,又,可求出快递小哥从地到地的路程,再计算小哥到达地的时间,从而问题可得解;(2)由题意,可根据余弦定理分别算出与的长,计算汽车行驰的路程,从而求出汽车到达地所用的时间,计算其与步小哥所用时间相差是否有15分钟,从而问题可得解.试题解析:(1)(公里),中,由,得(公里)于是,由知,快递小哥不能在50分钟内将快件送到处.(2)在中,由,得(公里),在中,,由,得(公里),-由(分钟)知,汽车能先到达处.点睛:此题主要考查了解三角形中正弦定理、余弦定理在实际生活中的应用,以及关于路程问题的求解运算等方面的知识与技能,属于中低档题型,也是常考题型.在此类问题中,总是正弦定理、余弦定理,以及相关联的三角函数的知识,所以根据题目条件、图形进行挖掘,找到与问题衔接处,从而寻找到问题的解决方案.18、(1);(2)或【解析】
(1)由辅助角公式可得,再求周期即可;(2)由求出,再解方程即可.【详解】解:(1),则的最小正周期为.(2)因为,所以,即,解得.因为,所以.因为,所以,即,则或,解得或.故当时,自变量的取值集合为或.【点睛】本题考查了三角恒等变换,重点考查了解三角方程,属中档题.19、(1)证明见解析;(2).【解析】
解法一:(1)取中点,连接,,证出,利用线面平行的判定定理即可证出.(2)取中点,连接,利用面面垂直的性质定理可得平面,过作于,可得平面,由即可求解.解法二:(1)取中点,连接,证出平面,平面,利用面面平行的判定定理可证出平面平面,再利用面面平行的性质定理即可证出.(2)取中点,连接,根据面面垂直的性质定理可得平面,再由,利用三棱锥的体积公式即可求解.【详解】解法一:(1)取中点,连接,.因为分别是的中点,所以,且,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)取中点,连接,则,且,因为平面平面,平面平面,平面,所以平面同理,在平面内,过作于,则平面,且,因为为的中点,所以,所以,.解法二:(1)取中点,连接,因为为的中点,所以,因为平面,平面,所以平面.因为,且,所以四边形为平行四边形,故,因为平面,平面,所以平面,因为,平面,所以平面平面,因为平面,所以平面.(2)取中点,连接,依题意,为等边三角形,所以,且.因为平面平面,平面平面,平面,所以平面.因为是的中点,所以,所以.【点睛】本小题主要考查几何体的体积及、直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想等.20、(1)(2)当时,函数取得最小值.【解析】
(1)将代入函数计算得到答案.(2)根据降次公式和辅助角公式化简函数为,当时取最小值.【详解】(1)(2)由可得,故函数的最小值为,当时取得最小值.【点睛】本题考查了三角函数的计算,三角函数的最小值,将三角函数化简为标准形式是解题的关键,意在考查学生的计算能力.21、(Ⅰ)见解析;(Ⅱ);(Ⅲ)见解析.【解析】
(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F-AE-P的余弦值;(Ⅲ)首先求得点G的坐标,然后结合平面的法向量和直线AG的方向向量可判断直线是否在平面内.【详解】(Ⅰ)由于PA⊥平面A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 盐城师范学院《硬笔书法》2021-2022学年期末试卷
- 2024装修合同预算清单参考
- 2024年硫代硫酸盐合作协议书
- 人教版四年级上册数学第六单元《除数是两位数的除法》测试卷【考试直接用】
- 苏教版四年级下册数学第三单元 三位数乘两位数 测试卷(满分必刷)
- 北师大版四年级上册数学第一单元 认识更大的数 测试卷附答案【a卷】
- 2024简单的租赁合同格式
- 2024建筑设计委托合同简单版
- 盐城师范学院《面向对象程序设计》2022-2023学年期末试卷
- 盐城师范学院《居住区景观设计》2021-2022学年第一学期期末试卷
- 心源性卒中诊断和治疗
- 钢栈桥及平台检查验收标准
- 污水处理工程监理大纲(附多图)
- 人教版八年级上册英语全册教案(完整版)教学设计含教学反思
- 保洁服务技能比武方案
- 医疗机构肠道门诊工作自查用表参考范本
- T∕CGMA 033001-2018 压缩空气站能效分级指南
- 《汽车维护》教案全套 课程单元设计
- 有创呼吸机讲义PPT通用课件
- 电子信息系统机房基础设施运行维护规范》(QPBC 00009-2016)
- _国际物流与货运代理方案
评论
0/150
提交评论