北师大长春附属学校2025届高一下数学期末质量检测试题含解析_第1页
北师大长春附属学校2025届高一下数学期末质量检测试题含解析_第2页
北师大长春附属学校2025届高一下数学期末质量检测试题含解析_第3页
北师大长春附属学校2025届高一下数学期末质量检测试题含解析_第4页
北师大长春附属学校2025届高一下数学期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大长春附属学校2025届高一下数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若变量满足约束条件则的最小值等于()A. B. C. D.22.设m,n是两条不同的直线,α A.若m⊥β,n⊥β , n⊥α,则m⊥αC.若m⊥n, n∥α,则m⊥α D.若m⊥n3.在中,角、、所对的边分别为、、,且,,,则的面积为()A. B. C. D.4.在△ABC中,已知,P为线段AB上的点,且的最大值为()A.3B.4C.5D.65.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位6.用数学归纳法时,从“k到”左边需增乘的代数式是()A. B.C. D.7.若且则的值是().A. B. C. D.8.已知扇形圆心角为,面积为,则扇形的弧长等于()A. B. C. D.9.若,且,则“”是“函数有零点”的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知等差数列的公差为2,且是与的等比中项,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知三棱锥P-ABC,PA⊥平面ABC,AC⊥BC,PA=2,AC=BC=1,则三棱锥P-ABC外接球的体积为__.12.已知直线平分圆的周长,则实数________.13.函数的最小正周期是__________.14.函数()的值域是__________.15.已知当时,函数(且)取得最小值,则时,的值为__________.16.某中学初中部共有名老师,高中部共有名教师,其性别比例如图所示,则该校女教师的人数为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的半径是2,圆心为.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.18.的内角,,的对边分别为,,,为边上一点,为的角平分线,,.(1)求的值:(2)求面积的最大值.19.已知.(1)化简;(2)若,且为第一象限角,求的值.20.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,且∠BAP=∠CDP=90°(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=AD,且四棱锥的侧面积为6+2,求四校锥P﹣ABCD的体积.21.如图,在三棱柱中,为正三角形,为的中点,,,.(1)证明:平;(2)证明:平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】解:由变量x,y满足约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1).故选A.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.2、A【解析】

依据立体几何有关定理及结论,逐个判断即可。【详解】A正确:利用“垂直于同一个平面的两条直线平行”及“两条直线有一条垂直于一个平面,则另一条也垂直于该平面”,若m⊥β且n⊥β ,则m//n,又n⊥α,所以m⊥αB错误:若m∥β, , β⊥α,则C错误:若m⊥n, n∥α,则m可能垂直于平面α,也可能平行于平面α,还可能在平面D错误:若m⊥n , n⊥β , β⊥α,则【点睛】本题主要考查立体几何中的定理和结论,意在考查学生几何定理掌握熟练程度。3、B【解析】

由正弦定理得,利用余弦定理可求出的值,然后利用三角形的面积公式可求得的面积.【详解】,,又,,由余弦定理可得,可得,所以,的面积为.故选:B.【点睛】本题考查三角形面积的计算,同时也考查了余弦定理解三角形,考查计算能力,属于中等题.4、A【解析】试题分析:在中,设,∵,,即,∴,∵,∴,即.∵,,∴,,∴.根据直角三角形可得,,,∴,以所在的直线为轴,以所在的直线为轴建立直角坐标系可得,为线段上的一点,则存在实数使得.设,,则,且,∴,可得则,即,解得,故所求的最大值为:,故选A.考点:三角形的内角和定理,两角和的正弦公式,基本不等式求解最值.5、A【解析】

函数过代入解得,再通过平移得到的图像.【详解】,函数过向右平移个单位得到的图象故答案选A【点睛】本题考查了三角函数图形,求函数表达式,函数平移,意在考查学生对于三角函数图形的理解.6、C【解析】

分别求出n=k时左端的表达式,和n=k+1时左端的表达式,比较可得“n从k到k+1”左端需增乘的代数式.【详解】当n=k时,左端=(k+1)(k+2)(k+3)…(2k),当n=k+1时,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左边需增乘的代数式是故选:C.【点睛】本题考查用数学归纳法证明等式,分别求出n=k时左端的表达式和n=k+1时左端的表达式,是解题的关键.7、C【解析】由题设,又,则,所以,,应选答案C.点睛:角変换是三角变换中的精髓,也是等价化归与转化数学思想的具体运用,求解本题的关键是巧妙地将一个角变为已知两角的差,再运用三角变换公式进行求解.8、C【解析】

根据扇形面积公式得到半径,再计算扇形弧长.【详解】扇形弧长故答案选C【点睛】本题考查了扇形的面积和弧长公式,解出扇形半径是解题的关键,意在考查学生的计算能力.9、A【解析】

结合函数零点的定义,利用充分条件和必要条件的定义进行判断,即可得出答案.【详解】由题意,当时,,函数与有交点,故函数有零点;当有零点时,不一定取,只要满足都符合题意.所以“”是“函数有零点”的充分不必要条件.故答案为:A【点睛】本题主要考查了函数零点的概念,以及对数函数的图象与性质的应用,其中解答中熟记函数零点的定义,以及对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.10、A【解析】

直接利用等差数列公式和等比中项公式得到答案.【详解】是与的等比中项,故即解得:故选:A【点睛】本题考查了等差数列和等比中项,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】

如图所示,取PB的中点O,∵PA⊥平面ABC,∴PA⊥AB,PA⊥BC,又BC⊥AC,PA∩AC=A,∴BC⊥平面PAC,∴BC⊥PC.∴OA=12PB,OC=12PB,∴OA=OB=OC=OP,故O为外接球的球心.又PA=2,AC=BC=1,∴AB=2,PB=6,∴外接球的半径R=∴V球=43πR3=4π3×(62)3=6点睛:空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.12、1【解析】

由题得圆心在直线上,解方程即得解.【详解】由题得圆心(1,a)在直线上,所以.故答案为1【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.13、;【解析】

利用余弦函数的最小正周期公式即可求解.【详解】因为函数,所以,故答案为:【点睛】本题考查了含余弦函数的最小正周期,需熟记求最小正周期的公式,属于基础题.14、【解析】

由,根据基本不等式即可得出,然后根据对数函数的单调性即可得出,即求出原函数的值域.【详解】解:,当且仅当,时取等号,;原函数的值域是.故答案为:.【点睛】考查函数的值域的定义及求法,基本不等式的应用,以及对数函数的单调性,增函数的定义.15、3【解析】

先根据计算,化简函数,再根据当时,函数取得最小值,代入计算得到答案.【详解】或当时,函数取得最小值:或(舍去)故答案为3【点睛】本题考查了三角函数的化简,辅助角公式,函数的最值,综合性较强,意在考查学生的综合应用能力和计算能力.16、【解析】

由初中部、高中部男女比例的饼图,初中部女老师占70%,高中部女老师占40%,分别算出女老师人数,再相加.【详解】初中部女老师占70%,高中部女老师占40%,该校女教师的人数为.【点睛】考查统计中读图能力,从图中提取基本信息的基本能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】

(1)直接根据圆的标准式方程,写出圆的方程即可;(2)设.由等于1.即,解得即可.【详解】解:(1)已知圆的半径是2,圆心为.圆的方程:;(2)设.的最大值等于7,等于1..解得或,即或.【点睛】本题考查了圆的方程,点与圆的位置关系,属于中档题.18、(1)(2)3【解析】

(1)由,,根据三角形面积公式可知,,再根据角平分线的定义可知,到,的距离相等,所以,即可求出;(2)先根据(1)可得,,由平方关系得,再根据三角形的面积公式,可化简得,然后根据基本不等式即可求出面积的最大值.【详解】(1)如图所示:因为,所以.又因为为的角平分线,所以到,的距离相等,所以所以.(2)由(1)及余弦定理得:所以,又因为所以,所以又因为且,故所以,当且仅当即时取等号.所以面积的最大值为.【点睛】本题主要考查正余弦定理在解三角形中的应用,三角形面积公式的应用,以及利用基本不等式求最值,意在考查学生的转化能力和数学运算能力,属于中档题.19、(1)(2)【解析】

(1)由条件利用诱导公式进行化简所给的式子,即可求得答案;(2)由题意应用诱导公式,同角三角函数的基本关系求得的值,可得的值,即可求得答案.【详解】(1)(2)①又②解得:为第一象限角【点睛】本题主要考查了三角函数化简求值问题,解题关键是熟练使用诱导公式和同名三角函数求值的解法,考查了分析能力和计算能力,属于中档题.20、(1)见解析;(2)【解析】

(1)只需证明平面,,即可得平面平面平面;(2)设,则,由四棱锥的侧面积,取得,在平面内作,垂足为.可得平面且,即可求四棱锥的体积.【详解】(1)由已知,得,,由于,故,从而平面,又平面,所以平面平面.(2)设,则,所以,从而,也为等腰直角三角形,为正三角形,于是四棱锥的侧面积,解得,在平面内作,垂足为,由(1)知,平面,故,可得平面且,故四棱锥的体积.【点睛】本题考查了面面垂直的判定与证明,以及四棱锥的体积的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,着重考查了推理与论证能力,属于基础题.21

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论