版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈市罗田县第一中学2023-2024学年高一数学第二学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图象,只需把函数的图象上所有点的()A.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.B.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.C.横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移.D.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向右平移.2.函数的图象的相邻两支截直线所得的线段长为,则的值是()A.0 B. C.1 D.3.在△ABC中,a=3,b=3,A=,则C为()A. B. C. D.4.若直线与直线平行,则的值为A. B. C. D.5.将函数(其中)的图象向右平移个单位,若所得图象与原图象重合,则不可能等于()A.0 B. C. D.6.如果且,那么的大小关系是()A. B.C. D.7.在正项等比数列中,,则()A. B. C. D.8.已知,,则()A. B. C. D.9.若,,则的最小值为()A.2 B. C. D.10.在中,角,,的对边分别为,,,若,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,,,则________.12.一艘海轮从出发,沿北偏东方向航行后到达海岛,然后从出发沿北偏东方向航行后到达海岛,如果下次直接从沿北偏东方向到达,则______.13.已知数列为等比数列,,,则数列的公比为__________.14.在△ABC中,点M,N满足,若,则x=________,y=________.15.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;16.如图是一正方体的表面展开图.、、都是所在棱的中点.则在原正方体中:①与异面;②平面;③平面平面;④与平面形成的线面角的正弦值是;⑤二面角的余弦值为.其中真命题的序号是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.⑴若与重合,求的焦点坐标;⑵若,求的最大值与最小值;⑶若的最小值为,求的取值范围.18.已知数列为等比数列,,公比,且成等差数列.(1)求数列的通项公式;(2)设,,求使的的取值范围.19.已知数列满足且,设,.(1)求;(2)求的通项公式;(3)求.20.在△ABC中,角A,B,C的对边分别为a,b,c,且a2+c2﹣b2=mac,其中m∈R.(1)若m=1,a=1,c=,求△ABC的面积;(2)若m=,A=2B,a=,求b.21.已知函数,是公差为的等差数列,是公比为的等比数列.且,,,.(1)分别求数列、的通项公式;(2)已知数列满足:,求数列的通项公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用三角函数的平移和伸缩变换的规律求出即可.【详解】为了得到函数的图象,先把函数图像的纵坐标不变,横坐标缩短到原来的倍到函数y=3sin2x的图象,再把所得图象所有的点向左平移个单位长度得到y=3sin(2x+)的图象.故选:B.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数性质的应用,三角函数图象的平移变换和伸缩变换的应用,属于基础题.2、C【解析】
根据题意可知函数周期为,利用周期公式求出,计算即可求值.【详解】由正切型函数的图象及相邻两支截直线所得的线段长为知,,所以,,故选C.【点睛】本题主要考查了正切型函数的周期,求值,属于中档题.3、C【解析】
由正弦定理先求出的值,然后求出结果【详解】在中,,则故选【点睛】本题运用正弦定理解三角形,熟练运用公式即可求出结果,较为简单。4、C【解析】试题分析:由两直线平行可知系数满足考点:两直线平行的判定5、D【解析】由题意,所以,因此,从而,可知不可能等于.6、B【解析】
取,故选B.7、D【解析】
结合对数的运算,得到,即可求解.【详解】由题意,在正项等比数列中,,则.故选:D.【点睛】本题主要考查了等比数列的性质,以及对数的运算求值,其中解答中熟记等比数列的性质,合理应用对数的运算求解是解答的关键,着重考查了推理与计算能力,属于基础题.8、A【解析】
由,代入运算即可得解.【详解】解:因为,,所以.故选:A.【点睛】本题考查了两角差的正切公式,属基础题.9、D【解析】
根据所给等量关系,用表示出可得.代入中,构造基本不等式即可求得的最小值.【详解】因为,所以变形可得所以由基本不等式可得当且仅当时取等号,解得所以的最小值为故选:D【点睛】本题考查了基本不等式求最值的应用,注意构造合适的基本不等式形式,属于中档题.10、A【解析】
由余弦定理可直接求出边的长.【详解】由余弦定理可得,,所以.故选A.【点睛】本题考查了余弦定理的运用,考查了计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据等比数列中,,得到公比,再写出和,从而得到.【详解】因为为等比数列,,,所以,所以,,所以.故答案为:.【点睛】本题考查等比数列通项公式中的基本量计算,属于简单题.12、【解析】
首先根据余弦定理求出,在根据正弦定理求出,即可求出【详解】有题知.所以.在中,,即,解得.所以,故答案为:【点睛】本题主要考查正弦定理和余弦定理的实际应用,熟练掌握公式为解题的关键,属于中档题.13、【解析】
设等比数列的公比为,由可求出的值.【详解】设等比数列的公比为,则,,因此,数列的公比为,故答案为:.【点睛】本题考查等比数列公比的计算,在等比数列的问题中,通常将数列中的项用首项和公比表示,建立方程组来求解,考查运算求解能力,属于基础题.14、【解析】特殊化,不妨设,利用坐标法,以A为原点,AB为轴,为轴,建立直角坐标系,,,则,.考点:本题考点为平面向量有关知识与计算,利用向量相等解题.15、【解析】
以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.16、①②④【解析】
将正方体的表面展开图还原成正方体,利用正方体中线线、线面以及面面关系,以及直线与平面所成角的定义和二面角的定义进行判断.【详解】根据条件将正方体进行还原如下图所示:对于命题①,由图形可知,直线与异面,命题①正确;对于命题②,、分别为所在棱的中点,易证四边形为平行四边形,所以,,平面,平面,平面,命题②正确;对于命题③,在正方体中,平面,由于四边形为平行四边形,,平面.、平面,,.则二面角所成的角为,显然不是直角,则平面与平面不垂直,命题③错误;对于命题④,设正方体的棱长为,易知平面,则与平面所成的角为,由勾股定理可得,,在中,,即直线与平面所成线面角的正弦值为,命题④正确;对于命题⑤,在正方体中,平面,且,平面.、平面,,,所以,二面角的平面角为,在中,由勾股定理得,,由余弦定理得,命题⑤错误.故答案为①②④.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面关系的判断以及线面角、二面角的计算,判断时要从空间中有关线线、线面、面面关系的平行或垂直的判定或性质定理出发进行推导,在计算空间角时,则应利用空间角的定义来求解,考查推理能力与运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】解:⑴,椭圆方程为,∴左、右焦点坐标为.⑵,椭圆方程为,设,则∴时;时.⑶设动点,则∵当时,取最小值,且,∴且解得.18、(1);(2)【解析】
(1)利用等差中项的性质列方程,并转化为的形式,由此求得的值,进而求得数列的通项公式.(2)先求得的表达式,利用裂项求和法求得,解不等式求得的取值范围.【详解】解:(1)∵成等差数列,得,∵等比数列,且,∴解得或又,∴,∴(2)∵,∴∴故由,得.【点睛】本小题主要考查等差中项的性质,考查等比数列基本量的计算,考查裂项求和法,考查不等式的解法,属于中档题.19、(1),,,;(1),;(3).【解析】
(1)依次代入计算,可求得;(1)归纳出,并用数学归纳法证明;(3)用裂项相消法求和,然后求极限.【详解】(1)∵且,∴,即,,,,,,,,,∴;(1)由(1)归纳:,下面用数学归纳法证明:1°n=1,n=1时,由(1)知成立,1°假设n=k(k>1)时,结论成立,即bk=1k1,则n=k+1时,ak=bk-k=1k1-k,,ak+1=(1k+1)(k+1),∴bk+1=ak+1+(k+1)=(1k+1)(k+1)+(k+1)=1(k+1)1,∴n=k+1时结论成立,∴对所有正整数n,bn=1n1.(3)由(1)知n1时,,∴,.【点睛】本题考查用归纳法求数列的通项公式,考查用裂项相消法求数列的和,考查数列的极限.在求数列通项公式时,可以根据已知的递推关系求出数列的前几项,然后归纳出通项公式,并用数学归纳法证明,这对学生的归纳推理能力有一定的要求,这也就是我们平常所学的从特殊到一般的推理方法.20、(1);(2)【解析】
(1)当时,由余弦定理可求,利用同角三角函数基本关系式可求的值,根据三角形的面积公式即可求解.(2)当时,由余弦定理可求,利用同角三角函数基本关系式可求的值,根据二倍角的正弦函数公式可求的值,利用正弦定理可求的值.【详解】(1)当时,,,,,.(2)当时,,,,由正弦定理得:,.【点睛】本题主要考查了余弦定理,同角三角函数基本关系式,三角形的面积公式,二倍角的正弦函数公式,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.21、(1),;(2).【解析】
(1)根据题意分别列出关于、的方程,求出这两个量,然后分别求出数列、的首项,再利用等差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论