广东省深圳市龙岗区2023-2024学年高一数学第二学期期末经典试题含解析_第1页
广东省深圳市龙岗区2023-2024学年高一数学第二学期期末经典试题含解析_第2页
广东省深圳市龙岗区2023-2024学年高一数学第二学期期末经典试题含解析_第3页
广东省深圳市龙岗区2023-2024学年高一数学第二学期期末经典试题含解析_第4页
广东省深圳市龙岗区2023-2024学年高一数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市龙岗区2023-2024学年高一数学第二学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.两条直线和,,在同一直角坐标系中的图象可能是()A. B.C. D.2.与直线平行,且到的距离为的直线方程为A. B. C. D.3.已知等差数列的前项之和为,前项和为,则它的前项的和为()A.B.C.D.4.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.5.为了了解所加工的一批零件的长度,抽测了其中个零件的长度,在这个工作中,个零件的长度是()A.总体 B.个体 C.样本容量 D.总体的一个样本6.截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱 B.圆锥 C.球 D.圆台7.已知数列{an}为等差数列,,=1,若,则=()A.22019 B.22020 C.22017 D.220188.已知圆,圆,分别为圆上的点,为轴上的动点,则的最小值为()A. B. C. D.9.“结绳计数”是远古时期人类智慧的结晶,即人们通过在绳子上打结来记录数量.如图所示的是一位农民记录自己采摘果实的个数.在从右向左依次排列的不同绳子上打结,满四进一.根据图示可知,农民采摘的果实的个数是()A.493 B.383 C.183 D.12310.若,则下列不等式恒成立的是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在边长为的菱形中,,为中点,则______.12.已知直线与圆相交于两点,则______.13.已知数列,,若该数列是减数列,则实数的取值范围是__________.14.函数,的值域是_____.15.数列的前项和,则__________.16.函数的单调增区间是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的内角A,B,C所对的边分别为a,b,c,且.(1)若,求的值;(2)若,求b,c的值.18.如图,在直三棱柱中,,,分别是,,的中点.(1)求证:平面;(2)若,求证:平面平面.19.已知数列和满足:,,,,且是以q为公比的等比数列.(1)求证:;(2)若,试判断是否为等比数列,并说明理由.(3)求和:.20.是亚太区域国家与地区加强多边经济联系、交流与合作的重要组织,其宗旨和目标是“相互依存、共同利益,坚持开放性多边贸易体制和减少区域间贸易壁垒.”2017年会议于11月10日至11日在越南岘港举行.某研究机构为了了解各年龄层对会议的关注程度,随机选取了100名年龄在内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分组区间分别为,,,,).(1)求选取的市民年龄在内的人数;(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与会议的宣传活动,求参与宣传活动的市民中至少有一人的年龄在内的概率.21.已知是同一平面内的三个向量,其中.(Ⅰ)若,且,求;(Ⅱ)若,且与垂直,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由方程得出直线的截距,逐个选项验证即可.【详解】由截距式方程可得直线的横、纵截距分别为,直线的横、纵截距分别为选项A,由的图象可得,可得直线的截距均为正数,故A正确;选项B,只有当时,才有直线平行,故B错误;选项C,只有当时,才有直线的纵截距相等,故C错误;选项D,由的图象可得,可得直线的横截距为正数,纵截距为负数,由图像不对应,故D错误;故选:A【点睛】本题考查了直线的截距式方程,需理解截距的定义,属于基础题.2、B【解析】试题分析:与直线平行的直线设为与的距离为考点:两直线间的距离点评:两平行直线间的距离3、C【解析】试题分析:由于等差数列中也成等差数列,即成等差数列,所以,故选C.考点:等差数列前项和的性质.4、D【解析】

求出正四棱锥的高后可求其体积.【详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【点睛】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.5、D【解析】

根据总体与样本中的相关概念进行判断.【详解】由题意可知,在这个工作中,个零件的长度是总体的一个样本,故选D.【点睛】本题考查总体与样本中相关概念的理解,属于基础题.6、C【解析】

试题分析:圆柱截面可能是矩形;圆锥截面可能是三角形;圆台截面可能是梯形,该几何体显然是球,故选C.7、A【解析】

根据等差数列的性质和函数的性质即可求出.【详解】由题知∵数列{an}为等差数列,an≠1(n∈N*),a1+a2019=1,∴a1+a2019=a2+a2018=a3+a2017=…=a1009+a1011a1010=1,∴a1010∴f(a1)×f(a2)×…×f(a2019)=41009×(﹣2)=﹣1.故选A.【点睛】本题考查了等差数列的性质和函数的性质,考查了运算能力和转化能力,属于中档题,注意:若{an}为等差数列,且m+n=p+q,则,性质的应用.8、D【解析】

求出圆关于轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆的圆心距减去两个圆的半径和,即可求得的最小值,得到答案.【详解】如图所示,圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,,半径为3,由图象可知,当三点共线时,取得最小值,且的最小值为圆与圆的圆心距减去两个圆的半径之和,即,故选D.【点睛】本题主要考查了圆的对称圆的方程的求解,以及两个圆的位置关系的应用,其中解答中合理利用两个圆的位置关系是解答本题的关键,着重考查了数形结合法,以及推理与运算能力,属于基础题.9、C【解析】

根据题意将四进制数转化为十进制数即可.【详解】根据题干知满四进一,则表示四进制数,将四进制数转化为十进制数,得到故答案为:C.【点睛】本题以数学文化为载体,考查了进位制等基础知识,注意运用四进制转化为十进制数,考查运算能力,属于基础题.10、D【解析】∵∴设代入可知均不正确对于,根据幂函数的性质即可判断正确故选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

选取为基底,根据向量的加法减法运算,利用数量积公式计算即可.【详解】因为,,,又,.【点睛】本题主要考查了向量的加法减法运算,向量的数量积,属于中档题.12、【解析】

首先求出圆的圆心坐标和半径,计算圆心到直线的距离,再计算弦长即可.【详解】圆,,圆心,半径.圆心到直线的距离..故答案为:【点睛】本题主要考查直线与圆的位置关系中的弦长问题,熟练掌握弦长公式为解题的关键,属于简单题.13、【解析】

本题可以先通过得出的解析式,再得出的解析式,最后通过数列是递减数列得出实数的取值范围.【详解】,因为该数列是递减数列,所以即因为所以实数的取值范围是.【点睛】本题考察的是递减数列的性质,递减数列的后一项减去前一项的值一定是一个负值.14、【解析】

首先根据的范围求出的范围,从而求出值域。【详解】当时,,由于反余弦函数是定义域上的减函数,且所以值域为故答案为:.【点睛】本题主要考查了复合函数值域的求法:首先求出内函数的值域再求外函数的值域。属于基础题。15、【解析】

根据数列前项和的定义即可得出.【详解】解:因为所以.故答案为:.【点睛】考查数列的定义,以及数列前项和的定义,属于基础题.16、,【解析】

先利用诱导公式化简,即可由正弦函数的单调性求出。【详解】因为,所以的单调增区间是,。【点睛】本题主要考查诱导公式以及正弦函数的性质——单调性的应用。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)先求出,再利用正弦定理可得结果;(2)由求出,再利用余弦定理解三角形.【详解】(1)∵,且,∴,由正弦定理得,∴;(2)∵,∴,∴,由余弦定理得,∴.【点睛】本题考查正弦余弦定理解三角形,是基础题.18、(1)详见解析(2)详见解析【解析】

(1)利用中位线定理可得∥,从而得证;(2)先证明,从而有平面,进而可得平面平面.【详解】(1)因为分别是的中点,所以∥.因为平面,平面,所以∥平面.(2)在直三棱柱中,平面,因为平面,所以.因为,且是的中点,所以.因为,平面,所以平面.因为平面,所以平面平面.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.19、(1)证明见解析(2)是等比数列,详见解析(3)答案不唯一,具体见解析【解析】

(1)由即可证明;(2)证明即可(3)由(1)可知,是以为公比的等比数列,也是以为公比的等比数列,讨论和分组求和即可【详解】(1)因为,且是以q为公比的等比数列,所以,则,所以.(2)是等比数列因为;所以,又所以是以5为首项,为公比的等比数列.(3)由(1)可知,是以为公比的等比数列,也是以为公比的等比数列,所以当时,,当时.【点睛】本题考查等比数列的证明,分组求和,考查推理计算及分类讨论思想,是中档题20、(1)30人;(2).【解析】

(1)由频率分布直方图,先求出年龄在内的频率,进而可求出人数;(2)先由分层抽样,确定应从第3,4组中分别抽取3人,2人,记第3组的3名志愿者分别为,第4组的2名志愿者分别为,再用列举法,分别列举出总的基本事件,以及满足条件的基本事件,基本事件个数比即为所求概率.【详解】(1)由题意可知,年龄在内的频率为,故年龄在内的市民人数为.(2)易知,第4组的人数为,故第3,4组共有50名市民,所以用分层抽样的方法在50名志愿者中抽取5名志愿者,每组抽取的人数分别为:第3组;第4组.所以应从第3,4组中分别抽取3人,2人.记第3组的3名志愿者分别为,第4组的2名志愿者分别为,则从5名志愿者中选取2名志愿者的所有情况为,,,,,,,,,,共有10种.其中第4组的2名志愿者至少有一名志愿者被选中的有:,,,,,,,共有7种,所以至少有一人的年龄在内的概率为.【点睛】本题主要考查由频率分布直方图求频数,以及古典概型的概率问题,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论