2023-2024学年北京市平谷区市级名校数学高一下期末考试模拟试题含解析_第1页
2023-2024学年北京市平谷区市级名校数学高一下期末考试模拟试题含解析_第2页
2023-2024学年北京市平谷区市级名校数学高一下期末考试模拟试题含解析_第3页
2023-2024学年北京市平谷区市级名校数学高一下期末考试模拟试题含解析_第4页
2023-2024学年北京市平谷区市级名校数学高一下期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年北京市平谷区市级名校数学高一下期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若扇形的面积为、半径为1,则扇形的圆心角为()A. B. C. D.2.已知点,直线过点,且与线段相交,则直线的斜率满足()A.或 B.或 C. D.3.若实数x,y满足,则z=x+y的最小值为()A.2 B.3 C.4 D.54.高铁、扫码支付、共享单车、网购被称为中国的“新四大发明”,为评估共享单车的使用情况,选了座城市作实验基地,这座城市共享单车的使用量(单位:人次/天)分别为,,…,,下面给出的指标中可以用来评估共享单车使用量的稳定程度的是()A.,,…,的标准差 B.,,…,的平均数C.,,…,的最大值 D.,,…,的中位数5.已知,,从射出的光线经过直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程可以用对称性转化为一条线段,这条线段的长为()A. B.3 C. D.6.如果全集,,则()A. B. C. D.7.已知点G为的重心,若,,则=()A. B. C. D.8.用数学归纳法证明这一不等式时,应注意必须为()A. B., C., D.,9.从装有2个红球和2个黑球的口袋内任取2个球,则互斥而不对立的两个事件是()A.恰有1个黑球与恰有2个黑球 B.至少有一个红球与都是黑球C.至少有一个黑球与至少有1个红球 D.至少有一个黑球与都是黑球10.从集合中随机抽取一个数,从集合中随机抽取一个数,则向量与向量垂直的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若则____________12.若函数,的图像关于对称,则________.13.已知是内的一点,,,则_______;若,则_______.14.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____________15.已知数列的通项公式为,的前项和为,则___________.16.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角A,B,C,的对应边分别为,且.(Ⅰ)求角B的大小;(Ⅱ)若的面积为,,D为AC的中点,求BD的长.18.如图,在平面直角坐标系中,点,直线,设圆的半径为1,圆心在上.(1)若圆心也在直线上,过点作圆的切线,求切线方程;(2)若圆上存在点,使,求圆心的横坐标的取值范围.19.如图,在三棱柱中,是边长为4的正三角形,侧面是矩形,分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.20.中,内角,,所对的边分别是,,,已知.(1)求角的大小;(2)设,的面积为,求的值.21.已知函数.求:(1)函数的最大值、最小值及最小正周期;(2)函数的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】设扇形的圆心角为α,则∵扇形的面积为,半径为1,

∴故选B2、A【解析】

画出三点的图像,根据的斜率,求得直线斜率的取值范围.【详解】如图所示,过点作直线轴交线段于点,作由直线①直线与线段的交点在线段(除去点)上时,直线的倾斜角为钝角,斜率的范围是.②直线与线段的交点在线段(除去点)上时,直线的倾斜角为锐角,斜率的范围是.因为,,所以直线的斜率满足或.故选:A.【点睛】本小题主要考查两点求斜率的公式,考查数形结合的数学思想方法,考查分类讨论的数学思想方法,属于基础题.3、D【解析】

由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【详解】由实数,满足作出可行域,如图:联立,解得,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,此时有最小值为.故选:D.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.4、A【解析】

利用方差或标准差表示一组数据的稳定程度可得出选项.【详解】表示一组数据的稳定程度是方差或标准差,标准差越小,数据越稳定故选:A【点睛】本题考查了用样本估计总体,需掌握住数据的稳定程度是用方差或标准差估计的,属于基础题.5、A【解析】

根据题意,画出示意图,求出点的坐标,进而利用两点之间距离公式求解.【详解】根据题意,作图如下:已知直线AB的方程为:,则:点P关于直线AB的对称点为,则:,解得点,同理可得点P关于直线OB的对称点为:故光线的路程为.故选:A.【点睛】本题考查点关于直线的对称点的求解、斜率的求解、以及两点之间的距离,属基础题.6、C【解析】

首先确定集合U,然后求解补集即可.【详解】由题意可得:,结合补集的定义可知.本题选择C选项.【点睛】本题主要考查集合的表示方法,补集的定义等知识,意在考查学生的转化能力和计算求解能力.7、B【解析】

由重心分中线为,可得,又(其中是中点),再由向量的加减法运算可得.【详解】设是中点,则,又为的重心,∴.故选B.【点睛】本题考查向量的线性运算,解题关键是掌握三角形重心的性质,即重心分中线为两段.8、D【解析】

根据题意验证,,时,不等式不成立,当时,不等式成立,即可得出答案.【详解】解:当,,时,显然不等式不成立,当时,不等式成立,故用数学归纳法证明这一不等式时,应注意必须为,故选:.【点睛】本题考查数学归纳法的应用,属于基础题.9、A【解析】

从装有2个红球和2个黑球的口袋中任取2个球,包括3种情况:①恰有一个黑球,②恰有两个黑球,③没有黑球.

故恰有一个黑球与恰有两个黑球不可能同时发生,它们是互斥事件,再由这两件事的和不是必然事件,故他们是互斥但不对立的事件,

故选:A.10、B【解析】

通过向量垂直的条件即可判断基本事件的个数,从而求得概率.【详解】基本事件总数为,当时,,满足的基本事件有,,,共3个,故所求概率为,故选B.【点睛】本题主要考查古典概型,计算满足条件的基本事件个数是解题的关键,意在考查学生的分析能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为,所以=.故填.12、【解析】

特殊值法:由的对称轴是,所以即可算出【详解】由题意得是三角函数所以【点睛】本题主要考查了三角函数的性质,需要记忆三角函数的基本性质:单调性、对称轴、周期、定义域、最值、对称中心等。根据对称性取特殊值法解决本题是关键。属于中等题。13、【解析】

对式子两边平方,再利用向量的数量积运算即可;式子两边分别与向量,进行数量积运算,得到关于的方程组,解方程组即可得答案.【详解】∵,∴;∵,∴解得:,∴.故答案为:;.【点睛】本题考查向量数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将向量等式转化为数量关系的方法.14、1【解析】分析:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,利用等比数列前n项和公式能求出结果.详解:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,∴S7=a1(1-2点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力.15、【解析】

计算出,再由可得出的值.【详解】当时,则,当时,则,当时,.,,因此,.故答案为:.【点睛】本题考查数列求和,解题的关键就是找出数列的规律,考查分析问题和解决问题的能力,属于中等题.16、【解析】

利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II)【解析】

(I)由正弦定理得,展开结合两角和的正弦整理求解;(Ⅱ)由面积得,利用平方求解即可【详解】(I),由正弦定理得整理得,则,,.(II),,两边平方得【点睛】本题考查正弦定理及两角和的正弦,三角形内角和定理,考查向量的数量积及模长,准确计算是关键,是中档题18、(1)或;(2).【解析】

(1)两直线方程联立可解得圆心坐标,又知圆的半径为,可得圆的方程,根据点到直线距离公式,列方程可求得直线斜率,进而得切线方程;(2)根据圆的圆心在直线:上可设圆的方程为,由,可得的轨迹方程为,若圆上存在点,使,只需两圆有公共点即可.【详解】(1)由得圆心,∵圆的半径为1,∴圆的方程为:,显然切线的斜率一定存在,设所求圆的切线方程为,即.∴,∴,∴或.∴所求圆的切线方程为或.(2)∵圆的圆心在直线:上,所以,设圆心为,则圆的方程为.又∵,∴设为,则,整理得,设为圆.所以点应该既在圆上又在圆上,即圆和圆有交点,∴,由,得,由,得.综上所述,的取值范围为.考点:1、圆的标准方程及切线的方程;2、圆与圆的位置关系及转化与划归思想的应用.【方法点睛】本题主要考查圆的标准方程及切线的方程、圆与圆的位置关系及转化与划归思想的应用.属于难题.转化与划归思想是解决高中数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决知识点较多以及知识跨度较大的问题发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将题设条件研究透,这样才能快速找准突破点.以便将问题转化为我们所熟悉的知识领域,进而顺利解答,希望同学们能够熟练掌握并应用于解题当中.本题(2)巧妙地将圆上存在点,使问题转化为,两圆有公共点问题是解决问题的关键所在.19、(1)见解析(2)【解析】

(1)取中点为,连接,由中位线定理证得,即证得平行四边形,于是有,这样就证得线面平行;(2)由等体积法变换后可计算.【详解】证明:(1)取中点为,连接,是平行四边形,平面,平面,∴平面解:(2)是线段中点,则【点睛】本题考查线面平行的判定,考查棱锥的体积.线面平行的证明关键是找到线线平行,而棱锥的体积常常用等积变换,转化顶点与底.20、(1)(2)【解析】

(1)利用正弦定理可将已知等式化为,利用两角和差余弦公式展开整理可求得,根据可求得结果;(2)利用三角形面积公式可构造方程求出;利用余弦定理可直接求得结果.【详解】(1)由正弦定理可得:,即(2)设的面积为,则由得:,解得:由余弦定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论