2023-2024学年新疆乌鲁木齐市沙依巴克区四中高一下数学期末综合测试试题含解析_第1页
2023-2024学年新疆乌鲁木齐市沙依巴克区四中高一下数学期末综合测试试题含解析_第2页
2023-2024学年新疆乌鲁木齐市沙依巴克区四中高一下数学期末综合测试试题含解析_第3页
2023-2024学年新疆乌鲁木齐市沙依巴克区四中高一下数学期末综合测试试题含解析_第4页
2023-2024学年新疆乌鲁木齐市沙依巴克区四中高一下数学期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年新疆乌鲁木齐市沙依巴克区四中高一下数学期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.向量,,若,则()A.2 B. C. D.2.已知是圆的一条弦,,则()A. B. C. D.与圆的半径有关3.若角的终边与单位圆交于点,则()A. B. C. D.不存在4.同时抛掷两枚骰子,朝上的点数之和为奇数的概率是()A. B. C. D.5.在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以Ox为始边,OP为终边,若,则P所在的圆弧最有可能的是()A. B. C. D.6.关于的方程在内有相异两实根,则实数的取值范围为()A. B. C. D.7.已知函数,当时,取得最小值,则等于()A.9 B.7 C.5 D.38.若变量满足约束条件则的最小值等于()A. B. C. D.29.在正四棱柱中,,则点到平面的距离是()A. B. C. D.10.在中,是斜边上的两个动点,且,则的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若向量与平行.则__.12.若的两边长分别为和,其夹角的余弦为,则其外接圆的面积为______________;13.已知向量,则的单位向量的坐标为_______.14.已知向量,的夹角为°,,,则______.15.某校选修“营养与卫生”课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高二年级的学生中抽取了8名,则在该校高一年级的学生中应抽取的人数为________.16.如图,货轮在海上以的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为150°的方向航行.为了确定船位,在点B观察灯塔A的方位角是120°,航行半小时后到达C点,观察灯塔A的方位角是75°,则货轮到达C点时与灯塔A的距离为______nmile三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集是实数集,集合,.(1)若,求实数的取值范围;(2)若,求.18.已知函数.(1)求函数的最小正周期;(2)若函数在的最大值为2,求实数的值.19.求下列各式的值:(1)求的值;(2)已知,,且,,求的值.20.已知函数.(1)求函数在区间上的最大值;(2)在中,若,且,求的值.21.为迎接世博会,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60000,四周空白的宽度为10cm,栏与栏之间的中缝空白的宽度为5cm,怎样确定广告矩形栏目高与宽的尺寸(单位:cm),能使整个矩形广告面积最小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:,,得得,故选C.考点:向量的垂直运算,向量的坐标运算.2、C【解析】

由数量积的几何意义,利用外心的几何特征计算即可得解.【详解】是圆的一条弦,易知在方向上的投影恰好为,所以=||||==2.故选C.【点睛】本题考查了数量积的运算,利用定义求解要确定模长及夹角,属于基础题.3、B【解析】

由三角函数的定义可得:,得解.【详解】解:在单位圆中,,故选B.【点睛】本题考查了三角函数的定义,属基础题.4、A【解析】

分别求出基本事件的总数和点数之和为奇数的事件总数,再由古典概型的概率计算公式求解.【详解】同时抛掷两枚骰子,总共有种情况,朝上的点数之和为奇数的情况有种,则所求概率为.故选:A.【点睛】本题考查古典概型概率的求法,属于基础题.5、A【解析】

根据三角函数线的定义,分别进行判断排除即可得答案.【详解】若P在AB段,正弦小于正切,正切有可能小于余弦;若P在CD段,正切最大,则cosα<sinα<tanα;若P在EF段,正切,余弦为负值,正弦为正,tanα<cosα<sinα;若P在GH段,正切为正值,正弦和余弦为负值,cosα<sinα<tanα.∴P所在的圆弧最有可能的是.故选:A.【点睛】本题任意角的三角函数的应用,根据角的大小判断角的正弦、余弦、正切值的正负及大小,为基础题.6、C【解析】

将问题转化为与有两个不同的交点;根据可得,对照的图象可构造出不等式求得结果.【详解】方程有两个相异实根等价于与有两个不同的交点当时,由图象可知:,解得:本题正确选项:【点睛】本题考查正弦型函数的图象应用,主要是根据方程根的个数确定参数范围,关键是能够将问题转化为交点个数问题,利用数形结合来进行求解.7、B【解析】

先对函数进行配凑,使得能够使用均值不等式,再利用均值不等式,求得结果.【详解】因为故当且仅当,即时,取得最小值.故,则.故选:B.【点睛】本题考查均值不等式的使用,属基础题;需要注意均值不等式使用的条件.8、A【解析】

由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】解:由变量x,y满足约束条件作出可行域如图,由图可知,最优解为A,联立,解得A(﹣1,).∴z=2x﹣y的最小值为2×(﹣1).故选A.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.9、A【解析】

计算的面积,根据可得点到平面的距离.【详解】中,,,∴的边上的高为,∴,设到平面的距离为,则,又,∴,解得.故选A.【点睛】本题涉及点面距离的求法,点面距可以通过建立空间直角坐标系来求得点面距离,或者寻找面面垂直,再直接过点做交线的垂线即可;当点面距离不好求时,也可以根据等积法把点到平面的距离归结为一个容易求得的几何体的体积.10、A【解析】

可借助直线方程和平面直角坐标系,代换出之间的关系,再结合向量的数量积公式进行求解即可【详解】如图所示:设直线方程为:,,,由得,可设,则,,,,当时,,故故选A【点睛】本题考查向量数量积的坐标运算,向量法在几何中的应用,属于中档题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意利用两个向量共线的性质,两个向量坐标形式的运算法则,求得的值.【详解】由题意,向量与平行,所以,解得.故答案为.【点睛】本题主要考查了两个向量共线的性质,两个向量坐标形式的运算,着重考查了推理与计算能力,属于基础题.12、【解析】

首先根据余弦定理求第三边,再求其对边的正弦值,最后根据正弦定理求半径和面积.【详解】设第三边为,,解得:,设已知两边的夹角为,,那么,根据正弦定理可知,,外接圆的面积.故填:.【点睛】本题简单考查了正余弦定理,考查计算能力,属于基础题型.13、.【解析】

由结论“与方向相同的单位向量为”可求出的坐标.【详解】,所以,,故答案为.【点睛】本题考查单位向量坐标的计算,考查共线向量的坐标运算,充分利用共线单位向量的结论可简化计算,考查运算求解能力,属于基础题.14、1【解析】

把向量,的夹角为60°,且,,代入平面向量的数量积公式,即可得到答案.【详解】由向量,的夹角为°,且,,则.故答案为1【点睛】本题考查了平面向量数量积的坐标表示,直接考查公式本身的直接应用,属于基础题.15、6【解析】

利用分层抽样的定义求解.【详解】设从高一年级的学生中抽取x名,由分层抽样的知识可知,解得x=6.故答案为6.【点睛】本题主要考查分层抽样,意在考查学生对该知识的掌握水平和分析推理能力.16、【解析】

通过方位角定义,求出,,利用正弦定理即可得到答案.【详解】根据题意,可知,,,因此可得,由正弦定理得:,求得,即答案为.【点睛】本题主要考查正弦定理的实际应用,难度不大.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)当时,;当时,【解析】

(1)若,则或,解得实数的取值范围;(2)若则,结合交集定义,分类讨论可得.【详解】解:(1)若,则或,即或.所以的取值范围为或.(2)∵,则且,∴.当时,;当时,.【点睛】本题考查集合的交集运算,元素与元素的关系,分类讨论思想,属于中档题.18、(1);(2)或【解析】

(1)根据二倍角公式进行整理化简可得,从而可得最小正周期;(2)将通过换元的方式变为,;讨论对称轴的具体位置,分别求解最大值,从而建立方程求得的值.【详解】(1)最小正周期(2)令,则由得①当,即时当时,由,解得(舍去)②当,即时当时,由得,解得或(舍去)③当,即时当时,,由,解得综上,或【点睛】本题考查正弦型函数最小正周期的求解、利用二次函数性质求解与三角函数有关的值域问题,解题关键是通过换元的方式将所求函数转化为二次函数的形式,再利用对称轴的位置进行讨论;易错点是忽略了换元后自变量的取值范围.19、(1)(2)【解析】

(1)利用二倍角公式以及辅助角公式化简即可.(2)利用配凑把打开即可.【详解】解:(1)原式(2),,又,,,,【点睛】本题主要考查了二倍角公式,两角和与差的正切的应用.辅助角公式.20、(1);(2).【解析】

(1)先将函数化简整理,得到,根据,得到,根据正弦函数的性质,即可得出结果;(2)令,得到或,根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论