2023-2024学年北京海淀外国语高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2023-2024学年北京海淀外国语高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2023-2024学年北京海淀外国语高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2023-2024学年北京海淀外国语高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2023-2024学年北京海淀外国语高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年北京海淀外国语高一数学第二学期期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量=(1,-3),=(4,-2),与垂直,则是()A.2 B.1 C.-2 D.-12.已知一个扇形的圆心角为,半径为1.则它的弧长为()A. B. C. D.3.已知数据,2的平均值为2,方差为1,则数据相对于原数据()A.一样稳定 B.变得比较稳定C.变得比较不稳定 D.稳定性不可以判断4.如图,E是平行四边形ABCD的边AD的中点,设等差数列的前n项和为,若,则()A.25 B. C. D.555.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤”,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重多少斤?()A.6斤 B.7斤 C.9斤 D.15斤6.已知等差数列的公差,若的前项之和大于前项之和,则()A. B. C. D.7.已知,,是三条不同的直线,,是两个不同的平面,则下列命题正确的是A.若,,,,,则B.若,,,,则C.若,,,,,则D.若,,,则8.一个几何体的三视图分别是一个正方形,一个矩形,一个半圆,尺寸大小如图所示,则该几何体的体积是()A. B. C. D.9.数列只有5项,分别是3,5,7,9,11,的一个通项公式为()A. B. C. D.10.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知三棱锥(如图所示),平面,,,,则此三棱锥的外接球的表面积为______.12.设满足不等式组,则的最小值为_____.13.若三棱锥的底面是以为斜边的等腰直角三角形,,,则该三棱锥的外接球的表面积为________.14.若则____________15.若函数是奇函数,其中,则__________.16.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列是等差数列,其前n项和为;数列是等比数列,公比大于0,其前项和为.已知,,,.(1)求数列和数列的通项公式;(2),求正整数n的值.18.在平面直角坐标系中,为坐标原点,三点满足.(1)求证:三点共线;(2)已知的最小值为,求实数的值.19.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.20.如图,在四棱锥中,,,,,,,分别为棱,的中点.(1)证明:平面.(2)证明:平面平面.21.四棱柱中,底面为正方形,,为中点,且.(1)证明;(2)求点到平面的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

试题分析:,由与垂直可知考点:向量垂直与坐标运算2、C【解析】

直接利用扇形弧长公式求解即可得到结果.【详解】由扇形弧长公式得:本题正确选项:【点睛】本题考查扇形弧长公式的应用,属于基础题.3、C【解析】

根据均值定义列式计算可得的和,从而得它们的均值,再由方差公式可得,从而得方差.然后判断.【详解】由题可得:平均值为2,由,,所以变得不稳定.故选:C.【点睛】本题考查均值与方差的计算公式,考查方差的含义.属于基础题.4、D【解析】

根据向量的加法和平面向量定理,得到和的值,从而得到等差数列的公差,根据等差数列求和公式,得到答案.【详解】因为E是平行四边形ABCD的边AD的中点,所以,因为,所以,,所以等差数列的公差,所以.故选:D.【点睛】本题考查向量的加法和平面向量定理,等差数列求和公式,属于简单题.5、D【解析】

直接利用等差数列的求和公式求解即可.【详解】因为每一尺的重量构成等差数列,,,,数列的前5项和为.即金锤共重15斤,故选D.【点睛】本题主要考查等差数列求和公式的应用,意在考查运用所学知识解答实际问题的能力,属于基础题.6、C【解析】

设等差数列的前项和为,由并结合等差数列的下标和性质可得出正确选项.【详解】设等差数列的前项和为,由,得,可得,故选:C.【点睛】本题考查等差数列性质的应用,解题时要充分利用等差数列下标和与等差中项的性质,可以简化计算,考查分析问题和解决问题的能力,属于中等题.7、D【解析】

逐一分析选项,得到答案.【详解】A.根据条件可知,若,不能推出;B.若,就不能推出;C.条件中没有,所以不能推出;D.因为,,所以,因为,所以.【点睛】本题考查了面面平行的判断,属于基础题型,需要具有空间想象能力,以及逻辑推理能力.8、C【解析】

由给定的几何体的三视图得到该几何体表示一个底面半径为1,母线长为2的半圆柱,结合圆柱的体积公式,即可求解.【详解】由题意,根据给定的几何体的三视图可得:该几何体表示一个底面半径为1,母线长为2的半圆柱,所以该半圆柱的体积为.故选:C.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.9、B【解析】

根据题意,得到数列为等差数列,通过首项和公差,得到通项.【详解】因为数列只有5项,分别是3,5,7,9,11,所以是以为首项,为公差的等差数列,.故选:B.【点睛】本题考查求等差数列的通项,属于简单题.10、B【解析】

根据所给数据,分别求出平均数为a,中位数为b,众数为c,然后进行比较可得选项.【详解】,中位数为,众数为.故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由于图形特殊,可将图形补成长方体,从而求长方体的外接球表面积即为所求.【详解】,,,,平面,将三棱锥补形为如图的长方体,则长方体的对角线,则【点睛】本题主要考查外接球的相关计算,将图形补成长方体是解决本题的关键,意在考查学生的划归能力及空间想象能力.12、-6【解析】作出可行域,如图内部(含边界),作直线,当向下平移时,减小,因此当过点时,为最小值.13、【解析】

由已知计算后知也是以为斜边的直角三角形,这样的中点到棱锥四个顶点的距离相等,即为外接球的球心,从而很容易得球的半径,计算出表面积.【详解】因为,所以是等腰直角三角形,且为斜边,为的中点,因为底面是以为斜边的等腰直角三角形,所以,点即为球心,则该三棱锥的外接圆半径,故该三棱锥的外接球的表面积为.【点睛】本题考查球的表面积,考查三棱锥与外接球,解题关键是找到外接球的球心,证明也是以为斜边的直角三角形,利用直角三角形的性质是本题的关键.也是寻找外接球球心的一种方法.14、【解析】因为,所以=.故填.15、【解析】

定义域上的奇函数,则【详解】函数是奇函数,所以,又,则所以填【点睛】定义域上的奇函数,我们可以直接搭建方程,若定义域中则不能直接代指.16、2【解析】

根据条件,利用余弦定理可建立关于c的方程,即可解出c.【详解】由余弦定理得,即,解得或(舍去).故填2.【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2)n的值为1.【解析】

(1)根据等比数列与等差数列,分别设公比与公差再用基本量法求解即可.(2)分别利用等差等比数列的求和公式求解得与,再代入整理求解二次方程即可.【详解】解:(1)设等比数列的公比为q,由,,可得.∵,可得.故;设等差数列的公差为d,由,得,由,得,∴.故;(2)由是等差数列,且,得由是等比数列,且,得.可得.由,可得,整理得:,解得(舍)或.∴n的值为1.【点睛】本题主要考查了等比等差数列的基本量法以及的等差等比数列的求和计算.属于中档题.18、(1)证明过程见解析;(2)【解析】试题分析:(1)只需证得即可。(2)由题意可求得的解析式,利用换元法转换成,讨论的单调性,可知其在上为单调减函数,得可解得的值。(1)证明:三点共线.(2),,令,其对称轴方程为在上是减函数,。点睛:证明三点共线的方法有两种:一、求出其中两点所在直线方程,验证第三点满足直线方程即可;二、任取两点构造两个向量,证明两向量共线即可。在考试中经常采用第二种方法,便于计算。证明四点共线一般采用第一种方法。19、(Ⅰ);(Ⅱ)或.【解析】

分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.20、(1)见解析(2)见解析【解析】

(1)由勾股定理得,已知,故得证;(2)由题,E为AB中点,,故ABCD为平行四边形,,由F为PB中点,EF为三角形APB的中位线,故,AP和AD相交于A,EF和CE相交于E,故得证.【详解】证明:(1)因为,,,所以,由所以.因为,,所以平面.(2)因为为棱的中点,所以,因为,所以.因为,所以,所以四边形为平行四边形,所以,所以平面.因为,分别为棱,的中点,所以,所以平面.因为,平面,平面,所以平面平面.【点睛】本题考查直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论