版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵东县第十中学2024届数学高一下期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若某市所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是()A.91 B.91.5C.92 D.92.52.已知向量,,则与的夹角为()A. B. C. D.3.已知圆的圆心与点关于直线对称,直线与圆相交于,两点,且,则圆的半径长为()A. B. C.3 D.4.在中,、、分别是角、、的对边,若,则的形状是()A.等腰三角形 B.钝角三角形 C.直角三角形 D.锐角三角形5.下列函数的最小值为的是()A. B.C. D.6.设,,,则()A. B. C. D.7.已知样本数据为3,1,3,2,3,2,则这个样本的中位数与众数分别为()A.2,3 B.3,3 C.2.5,3 D.2.5,28.的内角的对边分别为,分别根据下列条件解三角形,其中有两解的是()A.B.C.D.9.若,则的最小值为()A. B. C. D.10.已知是第一象限角,那么是()A.第一象限角 B.第二象限角C.第一或第二象限角 D.第一或第三象限角二、填空题:本大题共6小题,每小题5分,共30分。11.若,则________.12.若,则__________.(结果用反三角函数表示)13.设是等差数列的前项和,若,则___________.14.在中,角,,所对的边分别为,,,若,则角最大值为______.15.已知数列:,,,,,,,,,,,,,,,,,则__________.16.已知实数满足约束条件,若目标函数仅在点处取得最小值,则的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的的集合.18.已知平面向量,=(2x+3,-x),(x∈R).(1)若向量与向量垂直,求;(2)若与夹角为锐角,求的取值范围.19.如图为某区域部分交通线路图,其中直线,直线l与、、都垂直,垂足分别是点A、点B和点C(高速线右侧边缘),直线与、与的距离分别为1米、2千米,点M和点N分别在直线和上,满足,记.(1)若,求AM的长度;(2)记的面积为,求的表达式,并问为何值时,有最小值,并求出最小值;(3)求的取值范围.20.如图,在中,,角的平分线交于点,设,其中.(1)求;(2)若,求的长.21.如图,在直三棱柱中,,二面角为直角,为的中点.(1)求证:平面平面;(2)求直线与平面所成的角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:中位数为中间的一个数或两个数的平均数,所以中位数为考点:茎叶图2、D【解析】
利用夹角公式计算出两个向量夹角的余弦值,进而求得两个向量的夹角.【详解】设两个向量的夹角为,则,故.故选:D.【点睛】本小题主要考查两个向量夹角的计算,考查向量数量积和模的坐标表示,属于基础题.3、A【解析】
根据题干画出简图,在直角中,通过弦心距和半径关系通过勾股定理求解即可。【详解】圆的圆心与点关于直线对称,所以,,设圆的半径为,如下图,圆心到直线的距离为:,,【点睛】直线和圆相交问题一般两种方法:第一,通过弦心距d和半径r的关系,通过勾股定理求解即可。第二,直线方程和圆的方程联立,则。两种思路,此题属于中档题型。4、A【解析】
由正弦定理和,可得,在利用三角恒等变换的公式,化简得,即可求解.【详解】在中,由正弦定理,由,可得,又由,则,即,即,解得,所以为等腰三角形,故选A.【点睛】本题主要考查了正弦定理的应用,以及三角形形状的判定,其中解答中熟练应用正弦定理的边角互化,合理利用三角恒等变换的公式化简是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解析】分析:利用基本不等式的性质即可判断出正误,注意“一正二定三相等”的使用法则.详解:A.时显然不满足条件;B.其最小值大于1.D.令因此不正确.故选C.点睛:本题考查基本不等式,考查通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.6、B【解析】
根据与特殊点的比较可得因为,,,从而得到,得出答案.【详解】解:因为,,,所以.故选:B【点睛】本题主要考查指数函数和对数函数的单调性与特殊点的问题,要熟记一些特殊点,如,,.7、C【解析】
将样本数据从小到大排列即可求得中位数,再找出出现次数最多的数即为众数.【详解】将样本数据从小到大排列:1,2,2,3,3,3,中位数为,众数为3.故选:C.【点睛】本题考查了中位数和众数的概念,属于基础题.8、D【解析】
运用正弦定理公式,可以求出另一边的对角正弦值,最后还要根据三角形的特点:“大角对大边”进行合理排除.【详解】A.,由所以不存在这样的三角形.B.,由且所以只有一个角BC.中,同理也只有一个三角形.D.中此时,所以出现两个角符合题意,即存在两个三角形.所以选择D【点睛】在直接用正弦定理求另外一角中,求出后,记得一定要去判断是否会出现两个角.9、D【解析】
根据对数运算可求得且,,利用基本不等式可求得最小值.【详解】由得:且,(当且仅当时取等号)本题正确选项:【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够利用对数运算得到积的定值,属于基础题.10、D【解析】
根据象限角写出的取值范围,讨论即可知在第一或第三象限角【详解】依题意得,则,当时,是第一象限角当时,是第三象限角【点睛】本题主要考查象限角,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
观察式子特征,直接写出,即可求出。【详解】观察的式子特征,明确各项关系,以及首末两项,即可写出,所以,相比,增加了后两项,少了第一项,故。【点睛】本题主要考查学生的数学抽象能力,正确弄清式子特征是解题关键。12、;【解析】
由条件利用反三角函数的定义和性质即可求解.【详解】,则,故答案为:【点睛】本题考查了反三角函数的定义和性质,属于基础题.13、1.【解析】
由已知结合等差数列的性质求得,代入等差数列的前项和得答案.【详解】解:在等差数列中,由,得,,则,故答案为:1.【点睛】本题主要考查等差数列的通项公式,考查等差数列的性质,考查了等差数列前项和的求法,属于基础题.14、【解析】
根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题15、【解析】
根据数列的规律和可知的取值为,则分母为;又为分母为的项中的第项,则分子为,从而得到结果.【详解】当时,;当时,的分母为:又的分子为:本题正确结果:【点睛】本题考查根据数列的规律求解数列中的项,关键是能够根据分子的变化特点确定的取值.16、【解析】
利用数形结合,讨论的范围,比较斜率大小,可得结果.【详解】如图,当时,,则在点处取最小值,符合当时,令,要在点处取最小值,则当时,要在点处取最小值,则综上所述:故答案为:【点睛】本题考查目标函数中含参数的线性规划问题,难点在于寻找斜率之间的关系,属中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),值域为(2)【解析】
(1)根据向量的数量积,得到函数解析式,再根据正弦函数的性质,即可得出结果;(2)先由题意,将不等式化为,结合正弦函数的性质,即可得出结果.【详解】解:(1),由,得,,,在区间上的值域为(2)由,得,即所以解得,的解集为【点睛】本题主要考查正弦型函数的值域,以及三角不等式,熟记正弦函数的性质即可,属于常考题型.18、(1)10或2;(2).【解析】
(1)由向量与向量垂直,求得或,进而求得的坐标,利用模的计算公式,即可求解;(2)因为与夹角为锐角,所以,且与不共线,列出不等关系式,即可求解.【详解】(1)由题意,平面向量,,由向量与向量垂直,则,解得或,当时,,则,所;当时,,则,所,(2)因为与夹角为锐角,所以,且与不共线,即且,解得,且,即的取值范围为.【点睛】本题主要考查了向量的坐标运算,以及向量的垂直条件,以及向量的数量积的应用,着重考查了推理运算能力,属于基础题.19、(1);(2),当时,;(3).【解析】
(1),,,由即可得解;(2)用含有的式子表示出和,得出,根据的范围得出的最小值;(3)用含有的式子表示出,利用三角恒等变换和正弦函数的值域得出答案.【详解】(1)由题意可知:,即,,所以;(2),,,,,,,时,取得最大值1,;(3),由题意可知,令,.【点睛】本题考查三角函数的综合应用,考查逻辑思维能力和计算能力,考查对基本知识的掌握,考查分析能力,属于中档题.20、(1);(2)5.【解析】
(1)根据求出和的值,利用角平分线和二倍角公式求出,即可求出;(2)根据正弦定理求出,的关系,利用向量的夹角公式求出,可得,正弦定理可得答案【详解】解:(1)由,且,,,,则;(2)由正弦定理,得,即,,又,,由上两式解得,又由,得,解得【点睛】本题考查了二倍角公式和正弦定理的灵活运用和计算能力,是中档题.21、(1)证明见详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位人力资源管理制度精彩大全
- 医疗合作项目合同管理准则
- 高层住宅外墙清洗项目招投标
- 网络营销企业薪酬管理
- 居民区通风设备安装合同
- 天津市养老社区物业医疗服务规范
- 纺织服装弱电施工合同
- 广东省广州市天河区2023-2024学年高一上学期期末考试数学试卷(解析版)
- 罗定职业技术学院《田径AⅡ》2023-2024学年第一学期期末试卷
- 酒店工程塔吊施工协议
- 信息安全教育培训管理制度(3篇)
- 雄安新区容东片区地下空间专项规划-ECADI
- 长安大学《电工与电子技术基础》2023-2024学年期末试卷
- 2024年急诊科护理计划和总结
- 幼儿园教师讲故事技能培训
- 公司年度培训总结汇报
- 八上选读名著《寂静的春天》要点梳理与练习
- 电梯日管控、周排查、月调度内容表格
- 2024年湖北省高考生物试卷真题(含答案解析)
- 《信息技术改变学习》学历案
- 自行车被盗案汇报课件
评论
0/150
提交评论