版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省龙岩市一级达标校数学高一下期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中,,则()A.5 B.6 C. D.82.设双曲线的左右焦点分别是,过的直线交双曲线的左支于两点,若,且,则双曲线的离心率是()A. B. C. D.3.等差数列{}中,=2,=7,则=()A.10 B.20 C.16 D.124.如图,网格纸上正方形小格边长为,图中粗线画的是某几何体的三视图,则该几何体的表面积等于()A.B.C.D.5.在区间上随机地取一个数,则事件“”发生的概率为()A. B. C. D.6.若关于的不等式在区间上有解,则的取值范围是()A. B. C. D.7.要得到函数y=cos4x+πA.向左平移π3个单位长度 B.向右平移πC.向左平移π12个单位长度 D.向右平移π8.设二次函数在区间上单调递减,且,则实数的取值范围是()A.(-∞,0] B.[2,+∞) C.(-∞,0]∪[2,+∞) D.[0,2]9.已知数列的前项和为,且满足,,则()A. B. C. D.10.已知正方形的边长为,若将正方形沿对角线折叠为三棱锥,则在折叠过程中,不能出现()A. B.平面平面 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为__________;12.已知函数,下列说法:①图像关于对称;②的最小正周期为;③在区间上单调递减;④图像关于中心对称;⑤的最小正周期为;正确的是________.13.平面⊥平面,,,,直线,则直线与的位置关系是___.14.三棱锥P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,侧面PAB是等边三角形且与底面ABC垂直,则该三棱锥的外接球表面积为_____.15.在△ABC中,,则________.16.项数为的等差数列,若奇数项之和为88,偶数项之和为77,则实数的值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率;(2)恰有两支一等品的概率;(3)没有三等品的概率.18.设平面三点、、.(1)试求向量的模;(2)若向量与的夹角为,求;(3)求向量在上的投影.19.已知函数f1当a>0时,求函数y=f2若存在m>0使关于x的方程fx=m+120.已知圆与圆:关于直线对称.(1)求圆的标准方程;(2)已知点,若与直线垂直的直线与圆交于不同两点、,且是钝角,求直线在轴上的截距的取值范围.21.已知角的终边经过点.(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据余弦定理,可求边长.【详解】,代入数据,化解为解得或(舍)故选D.【点睛】本题考查了已知两边及其一边所对角,求另一边,这种题型用余弦定理,属于基础题型.2、C【解析】,则,所以,,则,所以,故选C。点睛:离心率问题关键是利用圆锥曲线的几何性质,以及三角形的几何关系来解决,本题中,由双曲线的几何性质,可以将图中的各边长都表示出来,再利用同一个角在两个三角形中的余弦定理,就可以得到的等量关系,求出离心率。3、D【解析】
根据等差数列的性质可知第五项减去第三项等于公差的2倍,由=+5得到2d等于5,然后再根据等差数列的性质得到第七项等于第五项加上公差的2倍,把的值和2d的值代入即可求出的值,即可知=,故选D.4、C【解析】
由三视图可知该几何体是一个四棱锥,作出图形即可求出表面积。【详解】该几何体为四棱锥,如图..选C.【点睛】本题考查了三视图,考查了四棱锥的表面积,考查了学生的空间想象能力与计算能力,属于基础题。5、A【解析】由得,,所以,由几何概型概率的计算公式得,,故选.考点:1.几何概型;2.对数函数的性质.6、A【解析】
利用分离常数法得出不等式在上成立,根据函数在上的单调性,求出的取值范围【详解】关于的不等式在区间上有解在上有解即在上成立,设函数数,恒成立在上是单调减函数且的值域为要在上有解,则即的取值范围是故选【点睛】本题是一道关于一元二次不等式的题目,解题的关键是掌握一元二次不等式的解法,分离含参量,然后求出结果,属于基础题.7、C【解析】
先化简得y=cos【详解】因为y=cos所以要得到函数y=cos4x+π3的图像,只需将函数故选:C【点睛】本题主要考查三角函数的图像的变换,意在考查学生对该知识的理解掌握水平,属于基础题.8、D【解析】
求出导函数,题意说明在上恒成立(不恒等于0),从而得,得开口方向,及函数单调性,再由函数性质可解.【详解】二次函数在区间上单调递减,则,,所以,即函数图象的开口向上,对称轴是直线.所以f(0)=f(2),则当时,有.【点睛】实际上对二次函数,当时,函数在递减,在上递增,当时,函数在递增,在上递减.9、B【解析】
由可知,数列隔项成等比数列,从而得到结果.【详解】由可知:当n≥2时,,两式作商可得:∴奇数项构成以1为首项,2为公比的等比数列,偶数项构成以2为首项,2为公比的等比数列,∴故选:B【点睛】本题考查数列的递推关系,考查隔项成等比,考查分析问题解决问题的能力,属于中档题.10、D【解析】对于A:取BD中点O,因为,AO所以面AOC,所以,故A对;对于B:当沿对角线折叠成直二面角时,有面平面平面,故B对;对于C:当折叠所成的二面角时,顶点A到底面BCD的距离为,此时,故C对;对于D:若,因为,面ABC,所以,而,即直角边长与斜边长相等,显然不对;故D错;故选D点睛:本题考查了立体几何中折叠问题,要分析清楚折叠前后的变化量与不变量以及线线与线面的位置关系,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据偶次被开方数大于等于零,分母不为零,列出不等式组,解出即可.【详解】依题意可得,,解得即,故函数的定义域为.故答案为:.【点睛】本题主要考查函数定义域的求法,涉及三角不等式的解法,属于基础题.12、②③⑤【解析】
将函数解析式改写成:,即可作出函数图象,根据图象即可判定.【详解】由题:,,所以函数为奇函数,,是该函数的周期,结合图象分析是其最小正周期,,作出函数图象:可得,该函数的最小正周期为,图像不关于对称;在区间上单调递减;图像不关于中心对称;故答案为:②③⑤【点睛】此题考查三角函数图象及其性质的辨析,涉及周期性,对称性和单调性,作为填空题,恰当地利用图象解决问题能够起到事半功倍的作用.13、【解析】
利用面面垂直的性质定理得到平面,又直线,利用线面垂直性质定理得.【详解】在长方体中,设平面为平面,平面为平面,直线为直线,由于,,由面面垂直的性质定理可得:平面,因为,由线面垂直的性质定理,可得.【点睛】空间中点、线、面的位置关系问题,一般是利用线面平行或垂直的判定定理或性质定理进行求解.14、【解析】
求出的外接圆半径,的外接圆半径,求出外接球的半径,即可求出该三棱锥的外接球的表面积.【详解】由题意,设的外心为,的外心为,则的外接圆半径,在中,因为,由余弦定理可得,所以,所以的外接圆半径,在等边中,由,所以,所以,设球心为,球的半径为,则,又由面,面,则,所以该三棱锥的外接球的表面积为.故答案为:.【点睛】本题主要考查了三棱锥的外接球的表面积的求解,其中解答中熟练应用空间几何体的结构特征,确定球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.15、【解析】
因为所以注意到:故.故答案为:16、7【解析】
奇数项和偶数项相减得到和,故,代入公式计算得到答案.【详解】由题意知:,前式减后式得到:,后式减前式得到故:解得故答案为:7【点睛】本题考查了等差数列的奇数项和与偶数项和关系,通过变换得到是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】
(1)恰有一支一等品,从3支一等品中任取一支,从二、三等品种任取两支利用分布乘法原理计算后除以基本事件总数;(2)恰有两枝一等品,从3支一等品中任取两支,从二、三等品种任取一支利用分布乘法原理计算后除以基本事件总数;(3)从5支非三等品中任取三支除以基本事件总数.【详解】(1)恰有一枝一等品的概率;(2)恰有两枝一等品的概率;(3)没有三等品的概率.【点睛】本题考查古典概型及其概率计算公式,考查逻辑思维能力和运算能力,属于常考题.18、(1);(2);(3).【解析】
(1)计算出、的坐标,可计算出的坐标,再利用平面向量模长的坐标表示可计算出向量的模;(2)由可计算出的值;(3)由投影的定义得出向量在上的投影为可计算出结果.【详解】(1)、、,,,因此,;(2)由(1)知,,,所以;(3)由(2)知向量与的夹角的余弦为,且.所以向量在上的投影为.【点睛】本题考查平面向量的坐标运算以及平面向量夹角的坐标表示、以及向量投影的计算,解题时要熟悉平面向量坐标的运算律以及平面向量数量积、模、夹角的坐标运算,考查计算能力,属于基础题.19、(1)见解析;(2)a<-3-2【解析】
(1)将问题转化为解不等式ax2-a+1x+1≥0,即ax-1x-1≥0(2)t=m+1m≥2,将问题转化为:关于x的方程ax2【详解】(1)由题意,fx=ax解方程ax-1x-1=0,得x1①当1a>1时,即当0<a<1时,解不等式ax-1x-1≥0,得此时,函数y=fx的定义域为②当1a=1时,即当a=1时,解不等式x-12此时,函数y=fx的定义域为③当1a<1时,即当a>1时,解不等式ax-1x-1≥0,解得此时,函数y=fx的定义域为(2)令t=m+1则关于x的方程fx=t有四个不同的实根可化为即ax2-解得a<-3-2【点睛】本题考查含参不等式的求解,考查函数的零点个数问题,在求解含参不等式时,找出分类讨论的基本依据,在求解二次函数的零点问题时,应结合图形找出等价条件,通过列不等式组来求解,考查分类讨论数学思想以及转化与化归数学思想,属于中等题。20、(1);(2)【解析】
(1)根据两圆对称,直径一样,只需圆心对称即可得圆C的标准方程;(2)设直线l的方程为y=﹣x+m与圆C联立方程组,利用韦达定理,设而不求的思想即可求解b范围,即截距的取值范围.【详解】(1)圆的圆心坐标为,半径为2设圆的圆心坐标为,由题意可知解得:由对称性质可得,圆的半径为2,所以圆的标准方程为:(2)设直线的方程为,联立得:,设直线与圆的交点,,由,得,(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度高端白酒品牌独家代理销售合同3篇
- 酒吧饮料冷藏柜租赁合同模板
- 软件开发股权合作协议
- 建筑住宅分包合同
- 2025版孔丽与张明离婚后财产分割及共同债务承担协议书3篇
- 棒球场遮阳棚安装合同
- 物流公司合作合同
- 医疗设备维修服务合同
- 投资者关系与市场信任
- 通信工程二级建造师合同模板
- 汽车底盘维修实训考核表(共24页)
- 炼铁厂3#烧结主抽风机拆除安全专项方案
- 四年级上册英语期末复习课件综合复习及检测讲义 牛津上海版一起
- 2020年污水处理厂设备操作维护必备
- 初中英语语法课堂教学设计有效性的探讨
- LSS-250B 纯水冷却器说明书
- 《煤矿开采学》课程设计实例
- (完整版)todo,doingsth初中魔鬼训练带答案
- 福建省青少年科技教育协会章程
- 防止返贫监测工作开展情况总结范文
- 2015年度设备预防性维护计划表
评论
0/150
提交评论