版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省吉化一中高一下数学期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量,且,则()A. B. C. D.2.终边在轴上的角的集合()A. B.C. D.3.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.4.若,则下列不等式不成立的是()A. B. C. D.5.已知直三棱柱的所有棱长都相等,为的中点,则与所成角的余弦值为()A. B. C. D.6.以下现象是随机现象的是A.标准大气压下,水加热到100℃,必会沸腾B.长和宽分别为a,b的矩形,其面积为C.走到十字路口,遇到红灯D.三角形内角和为180°7.某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法 B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法 D.简单随机抽样法,分层抽样法8.在中,角所对的边分边为,已知,则此三角形的解的情况是()A.有一解 B.有两解 C.无解 D.有解但解的个数不确定9.对数列,若区间满足下列条件:①;②,则称为区间套.下列选项中,可以构成区间套的数列是()A.;B.C.D.10.“()”是“函数是奇函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知内接于抛物线,其中O为原点,若此内接三角形的垂心恰为抛物线的焦点,则的外接圆方程为_____.12.已知等比数列中,,,若数列满足,则数列的前项和=________.13.已知是等差数列,公差不为零,若,,成等比数列,且,则________14.已知数列,其中,若数列中,恒成立,则实数的取值范围是_______.15.若数列满足,,,则______.16.将二进制数110转化为十进制数的结果是_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求经过点且分别满足下列条件的直线的一般式方程.(1)倾斜角为45°;(2)在轴上的截距为5;(3)在第二象限与坐标轴围成的三角形面积为4.18.如图,是的直径,所在的平面,是圆上一点,,.(1)求证:平面平面;(2)求直线与平面所成角的正切值.19.已知函数.(1)求函数的最小正周期和值域;(2)设为的三个内角,若,,求的值.20.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.21.已知平面向量,.(1)若与垂直,求;(2)若,求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:因为,,且,所以,,故选B.考点:1、平面向量坐标运算;2、平行向量的性质.2、D【解析】
根据轴线角的定义即可求解.【详解】A项,是终边在轴正半轴的角的集合;B项,是终边在轴的角的集合;C项,是终边在轴正半轴的角的集合;D项,是终边在轴的角的集合;综上,D正确.故选:D【点睛】本题主要考查了轴线角的判断,属于基础题.3、B【解析】
分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.4、A【解析】
由题得a<b<0,再利用作差比较法判断每一个选项的正误得解.【详解】由题得a<b<0,对于选项A,=,所以选项A错误.对于选项B,显然正确.对于选项C,,所以,所以选项C正确.对于选项D,,所以选项D正确.故答案为A【点睛】(1)本题主要考查不等式的基本性质和实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比差的一般步骤是:作差→变形(配方、因式分解、通分等)→与零比→下结论;比商的一般步骤是:作商→变形(配方、因式分解、通分等)→与1比→下结论.如果两个数都是正数,一般用比商,其它一般用比差.5、D【解析】
取的中点,连接,则,所以异面直线与所成角就是直线与所成角,在中,利用余弦定理,即可求解.【详解】由题意,取的中点,连接,则,所以异面直线与所成角就是直线与所成角,设正三棱柱的各棱长为,则,设直线与所成角为,在中,由余弦定理可得,即异面直线与所成角的余弦值为,故选D.【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.6、C【解析】
对每一个选项逐一分析判断得解.【详解】A.标准大气压下,水加热到100℃,必会沸腾,是必然事件;B.长和宽分别为a,b的矩形,其面积为,是必然事件;C.走到十字路口,遇到红灯,是随机事件;D.三角形内角和为180°,是必然事件.故选C【点睛】本题主要考查必然事件、随机事件的定义与判断,意在考查学生对该知识的理解掌握水平,属于基础题.7、B【解析】
此题为抽样方法的选取问题.当总体中个体较少时宜采用简单随机抽样法;当总体中的个体差异较大时,宜采用分层抽样;当总体中个体较多时,宜采用系统抽样.【详解】依据题意,第①项调查中,总体中的个体差异较大,应采用分层抽样法;第②项调查总体中个体较少,应采用简单随机抽样法.
故选B.【点睛】本题考查随机抽样知识,属基本题型、基本概念的考查.8、C【解析】由三角形正弦定理可知无解,所以三角形无解,选C.9、C【解析】由题意,得为递增数列,为递减数列,且当时,;而与与均为递减数列,所以排除A,B,D,故选C.考点:新定义题目.10、C【解析】若,则,函数为奇函数,所以充分性成立;反之,若函数是奇函数,则,即,因此必要性也是成立,所以“”是“函数是奇函数”充要条件,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由抛物线的对称性知A、B关于x轴对称,设出它们的坐标,利用三角形的垂心的性质,结合斜率之积等于﹣1即可求得直线MN的方程,即可求出点C的坐标,问题得以解决.【详解】∵抛物线关于x轴对称,内接三角形的垂心恰为抛物线的焦点,三边上的高过焦点,∴另两个顶点A,B关于x轴对称,即△ABO是等腰三角形,作AO的中垂线MN,交x轴与C点,而Ox是AB的中垂线,故C点即为△ABO的外接圆的圆心,OC是外接圆的半径,设A(x1,2),B(x1,﹣2),连接BF,则BF⊥AO,∵kBF,kAO,∴kBF•kAO=•1,整理,得x1(x1﹣5)=1,则x1=5,(x1=1不合题意,舍去),∵AO的中点为(,),且MN∥BF,∴直线MN的方程为y(x),当x1=5代入得2x+4y﹣91,∵C是MN与x轴的交点,∴C(,1),而△ABO的外接圆的半径OC,于是得到三角形外接圆方程为(x)2+y2=()2,△OAB的外接圆方程为:x2﹣9x+y2=1,故答案为x2﹣9x+y2=1.【点睛】本题考查抛物线的简单性质,考查了两直线垂直与斜率的关系,是中档题12、【解析】试题分析:根据题意,由于等比数列中,,,则可知公比为,那么可知等比数列中,,,故可知,那么可知数列的前项和=1=,故可知答案为.考点:等比数列点评:主要是考查了等比数列的通项公式以及数列的求和的运用,属于基础题.13、【解析】
根据题设条件,得到方程组,求得,即可得到答案.【详解】由题意,数列是等差数列,满足,,成等比数列,且,可得,即且,解得,所以.故答案为:.【点睛】本题主要考查了等差数列的通项公式,以及等比中项的应用,其中解答中熟练利用等差数列的通项公式和等比中项公式,列出方程组求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】
由函数(数列)单调性确定的项,哪些项取,哪些项取,再由是最小项,得不等关系.【详解】由题意数列是递增数列,数列是递减数列,存在,使得时,,当时,,∵数列中,是唯一的最小项,∴或,或,或,综上.∴的取值范围是.故答案为:.【点睛】本题考查数列的单调性与最值.解题时楞借助函数的单调性求解.但数列是特殊的函数,它的自变量只能取正整数,因此讨论时与连续函数有一些区别.15、【解析】
由,化简得,则为等差数列,结合已知条件得.【详解】由,化简得,且,,得,所以是以为首项,以为公差的等差数列,所以,即故答案为:【点睛】本题考查了数列的递推式,考查了判断数列是等差数列的方法,属于中档题.16、6【解析】
将二进制数从右开始,第一位数字乘以2的0次幂,第二位数字乘以2的1次幂,以此类推,进行计算即可.【详解】,故答案为:6.【点睛】本题考查进位制,解题关键是了解不同进制数之间的换算法则,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】
(1)利用斜率和倾斜角的关系,可以求出斜率,可以用点斜式写出直线方程,最后化为一般方程;(2)设出直线的斜截式方程,把点代入方程中求出斜率,进而可求出方程,化为一般式方程即可;(3)设出直线的截距式方程,利用面积公式和已知条件,可以求出所设参数,即可求出直线方程,化为一般式即可.【详解】(1)因为直线的倾斜角为45°,所以斜率,代入点斜式,即.(2)因为直线在轴上的截距是5,所以设直线方程为:,代入点得,故直线方程为.(3)设所求直线方程为则,即,解之得,,所以直线方程为,即.【点睛】本题考查了利用点斜式、截距式、斜截式求直线方程,正确选择方程的形式是解题的关键.18、(1)证明见解析;(2)2.【解析】
(1)首先证明平面,利用线面垂直推出平面平面;(2)找到直线与平面所成角所在三角形,利用三角形边角关系求解即可.【详解】(1)∵是直径,∴,即,又∵所在的平面,在所在的平面内,∴,∴平面,又平面,∴平面平面;(2)∵平面,∴直线与平面所成角即,设,∵,∴,∴,∴.【点睛】本题主要考查了面面垂直的证明,直线与平面所成角的求解,属于一般题.19、(1)周期,值域为;(2).【解析】
(1)利用二倍角降幂公式与辅助角公式将函数的解析式进行化简,利用周期公式求出函数的最小正周期,并求出函数的值域;(2)先由的值,求出角的值,然后由结合同角三角函数的基本关系以及两角和的余弦公式求出的值.【详解】(1)∵且,∴所求周期,值域为;(2)∵是的三个内角,,∴∴又,即,又∵,故,故.【点睛】本题考查三角函数与解三角形的综合问题,考查三角函数的基本性质以及三角形中的求值问题,求解三角函数的问题时,要将三角函数解析式进行化简,结合正余弦函数的基本性质求解,考查分析问题的能力和计算能力,属于中等题.20、(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)由图象可得甲、乙两人五次测试的成绩分别为,甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.根据平均数,方差的公式代入计算得解(2)由可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.试题解析:(1)由图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.=13,=13,×[(10-13)2+(13-13)2+(12-13)2+(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学课件
- 华师大版初中科学3.3 阳光的组成(14课件)
- 2023-2024学年浙江省宁波市余姚市子陵中学教育集团子陵校区七年级(下)竞赛数学试卷
- 上班迟到与旷工处理制度
- 逻辑代数基本公式及定律
- 2022年三年级语文下册第八单元主题阅读+答题技巧(含答案、解析)部编版
- 佛山市重点中学2024届高三模拟考试(一)数学试题理试卷
- 算法设计与分析 课件 10.3.4-综合应用-最短路径问题-弗洛伊德算法
- 2024年河北客运资格专业能力考试题库
- 2024年红河客运从业资格证考试答案
- GB/T 23679-2009集装箱机械箱封
- GB/T 23505-2017石油天然气工业钻机和修井机
- 初中英语-名词-单复数-练习题-含答案
- 小学综合实践活动教育科学四年级上册综合小主题我们的传统节日
- 各国美食英语介绍课件
- 五年级上册数学说课稿5平行四边形面积青岛版
- 2022年北京市海淀区名校数学八上期末考试模拟试题含解析
- 人民防空知识教育课件
- 支气管肺炎完整版课件
- 办公楼物业保洁服务人员配备方案
- 设备维护保养流程
评论
0/150
提交评论