版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市朝阳区北京八十中学2024年高一数学第二学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为万元,则10时到11时的销售额为()A.万元 B.万元 C.万元 D.万元2.一空间几何体的三视图如下图所示,则该几何体的体积为()A.1 B.3 C.6 D.23.《九章算术》是我国古代数学成就的杰出代表作之一,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢矢),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于6米的弧田,按照上述经验公式计算所得弧田面积约为()A.12平方米 B.16平方米 C.20平方米 D.24平方米4.已知,取值如下表:014561.3m3m5.67.4画散点图分析可知:与线性相关,且求得回归方程为,则m的值(精确到0.1)为()A.1.5 B.1.6 C.1.7 D.1.85.函数的零点有两个,求实数的取值范围()A. B.或 C.或 D.6.某小吃店的日盈利(单位:百元)与当天平均气温(单位:℃)之间有如下数据:/℃/百元对上述数据进行分析发现,与之间具有线性相关关系,则线性回归方程为()参考公式:A. B.C. D.7.为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天的销售额的情况如表所示:开业天数1020304050销售额/天(万元)62758189根据上表提供的数据,求得关于的线性回归方程为,由于表中有一个数据模糊看不清,请你推断出该数据的值为()A.68 B.68.3 C.71 D.71.38.已知a、b是两条不同的直线,、是两个不同的平面,若,,,则下列三个结论:①、②、③.其中正确的个数为()A.0 B.1 C.2 D.39.下列角位于第三象限的是()A. B. C. D.10.在中,,BC边上的高等于,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,则的前60项和为_____.12.若函数有两个不同的零点,则实数的取值范围是______.13.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用表示解下个圆环所需的移动最少次数,满足,且,则解下4个环所需的最少移动次数为_____.14.若,则______(用表示).15.函数的反函数为____________.16.已知无穷等比数列的首项为,公比为q,且,则首项的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,平面平面,,点,,分别为线段,,的中点,点是线段的中点.求证:(1)平面;(2).18.如图,在长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求直线与平面的夹角.19.已知的外接圆的半径为,内角,,的对边分别为,,,又向量,,且.(1)求角;(2)求三角形的面积的最大值并求此时的周长.20.求值:(1)一个扇形的面积为1,周长为4,求圆心角的弧度数;(2)已知,计算.21.如图,在中,点在边上,,,.(1)求边的长;(2)若的面积是,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:先根据12时到14时的销售额为万元求出总的销售额,再求10时到11时的销售额.详解:设总的销售额为x,则.10时到11时的销售额的频率为1-0.1-0.4-0.25-0.1=0.15.所以10时到11时的销售额为.故答案为C.点睛:(1)本题主要考查频率分布直方图求概率、频数和总数,意在考查学生对这些基础知识的掌握水平.(2)在频率分布直方图中,所有小矩形的面积和为1,频率=.2、D【解析】
几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.【详解】由三视图可知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.四棱锥的体积是.故选D.【点睛】本题考查由三视图求几何体的体积,由三视图求几何体的体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.3、C【解析】
在中,由题意OA=4,∠DAO=,即可求得OD,AD的值,根据题意可求矢和弦的值,即可利用公式计算求值得解.【详解】如图,由题意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面积=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故选:C【点睛】本题考查扇形的面积公式,考查数学阅读能力和数学运算能力,属于中档题.4、C【解析】
根据表格中的数据,求得样本中心为,代入回归直线方程,即可求解.【详解】由题意,根据表格中的数据,可得,,即样本中心为,代入回归直线方程,即,解得,故选C.【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】
由题意可得,的图象(红色部分)和直线有2个交点,数形结合求得的范围.【详解】由题意可得的图象(红色部分)和直线有2个交点,如图所示:故有或,故选:B.【点睛】已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的图象的交点个数问题.6、B【解析】
计算出,,把数据代入公式计算,即可得到答案.【详解】由题可得:,,,,;所以,,则线性回归方程为;故答案选B【点睛】本题考查线性回归方程的求解,考查学生的计算能力,属于基础题.7、A【解析】
根据表中数据计算,再代入线性回归方程求得,进而根据平均数的定义求出所求的数据.【详解】根据表中数据,可得,代入线性回归方程中,求得,则表中模糊不清的数据是,故选:B.【点睛】本题考查了线性回归方程过样本中心点的应用问题,是基础题.8、C【解析】
根据题意,,,,则有,因此,,不难判断.【详解】因为,,,则有,所以,,所以①正确,②不正确,③正确,则其中正确命题的个数为2.故选C【点睛】本题考查空间中直线与平面之间的位置关系,考查空间推理能力,属于简单题.9、D【解析】
根据第三象限角度的范围,结合选项,进行分析选择.【详解】第三象限的角度范围是.对A:,是第二象限的角,故不满足题意;对B:是第二象限的角度,故不满足题意;对C:是第二象限的角度,故不满足题意;对D:,是第三象限的角度,满足题意.故选:D.【点睛】本题考查角度范围的判断,属基础题.10、D【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D.【考点】正弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.二、填空题:本大题共6小题,每小题5分,共30分。11、1830【解析】
由题意可得,,,,,,…,,变形可得,,,,,,,,…,利用数列的结构特征,求出的前60项和.【详解】解:,∴,,,,,,…,,∴,,,,,,,,…,从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列,的前60项和为,故答案为:.【点睛】本题主要考查递推公式的应用,考查利用构造等差数列求数列的前项和,属于中档题.12、【解析】
令,可得,从而将问题转化为和的图象有两个不同交点,作出图形,可求出答案.【详解】由题意,令,则,则和的图象有两个不同交点,作出的图象,如下图,是过点的直线,当直线斜率时,和的图象有两个交点.故答案为:.【点睛】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题.13、7【解析】
利用的通项公式,依次求出,从而得到,即可得到答案。【详解】由于表示解下个圆环所需的移动最少次数,满足,且所以,,故,所以解下4个环所需的最少移动次数为7故答案为7.【点睛】本题考查数列的递推公式,属于基础题。14、【解析】
直接利用诱导公式化简求解即可.【详解】解:,则,故答案为:.【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力,属于基础题.15、【解析】
首先求出在区间的值域,再由表示的含义,得到所求函数的反函数.【详解】因为,所以,.所以的反函数是.故答案为:【点睛】本题主要考查反函数定义,同时考查了三角函数的值域问题,属于简单题.16、【解析】
根据极限存在得出,对分、和三种情况讨论得出与之间的关系,可得出的取值范围.【详解】由于,则.①当时,则,;②当时,则,;③当时,,解得.综上所述:首项的取值范围是,故答案为:.【点睛】本题考查极限的应用,要结合极限的定义得出公比的取值范围,同时要对公比的取值范围进行分类讨论,考查分类讨论思想的应用,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】
(1)连AF交BE于Q,连QO,推导出Q是△PAB的重心,从而FG∥QO,由此能证明FG∥平面EBO.(2)推导出BO⊥AC,从而BO⊥面PAC,进而BO⊥PA,再求出OE⊥PA,由此能证明PA⊥平面EBO,利用线面垂直的性质可证PA⊥BE.【详解】(1)连接AF交BE于Q,连接QO,因为E,F分别为边PA,PB的中点,所以Q为△PAB的重心,可得:2,又因为O为线段AC的中点,G是线段CO的中点,所以2,于是,所以FG∥QO,因为FG⊄平面EBO,QO⊂平面EBO,所以FG∥平面EBO.(2)因为O为边AC的中点,AB=BC,所以BO⊥AC,因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO⊂平面ABC,所以BO⊥平面PAC,因为PA⊂平面PAC,所以BO⊥PA,因为点E,O分别为线段PA,AC的中点,所以EO∥PC,因为PA⊥PC,所以PA⊥EO,又BO∩OE=O,BO,EO⊂平面EBO,所以PA⊥平面EBO,因为BE⊂平面EBO,所以PA⊥BE.【点睛】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.18、(1)见证明;(2)见证明;(3)【解析】
(1)连接,交于,则为中点,连接OP,可证明,从而可证明直线平面;(2)先证明AC⊥BD,,可得到平面,然后结合平面,可知平面平面;(3)连接,由(2)知,平面平面,可知即为与平面的夹角,求解即可.【详解】(1)证明:连接,交于,则为中点,连接OP,∵P为的中点,∴,∵OP⊂平面,⊄平面,∴平面;(2)证明:长方体中,,底面是正方形,则AC⊥BD,又⊥面,则.∵⊂平面,⊂平面,,∴平面.∵平面,∴平面平面;(3)解:连接,由(2)知,平面平面,∴即为与平面的夹角,在长方体中,∵,∴.在中,.∴直线与平面的夹角为.【点睛】本题考查了线面平行、面面垂直的证明,考查了线面角的求法,考查了学生的空间想象能力和计算求解能力,属于中档题.19、(1).(2),周长为.【解析】
(1)由,利用坐标表示化简,结合余弦定理求角C(2)利用(1)中,应用正弦定理和基本不等式,即可求出面积的最大值,此时三角形为正三角即可求周长.【详解】(1)∵,∴,且,由正弦定理得:,化简得:.由余弦定理:,∴,∵,∴.(2)∵,∴(当且仅当时取“”),所以,,此时,为正三角形,此时三角形的周长为.【点睛】本题主要考查了利用数量积判断两个平面向量的垂直关系,正弦定理,余弦定理,基本不等式,属于中档题.20、(1);(2).【解析】
(1)设出扇形的半径为,弧长为,利用面积、周长的值,得到关于的方程;(2)由已知条件得到,再代入所求的式子进行约分求值.【详解】(1)设扇形的半径为,弧长为,则解得:所以圆心角的弧度数.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- HY/T 0414-2024海底地形地貌资料整编技术规范
- 轻工机械生产线招标合同三篇
- 知识的田园幼儿园教学工作计划文档
- 引入精益生产理念的计划
- 大型商业综合体建设工程合同三篇
- 成本控制的关键策略与技巧计划
- 有效沟通与说服技巧培训
- 信阳师范大学《导向设计》2023-2024学年第一学期期末试卷
- 新余学院《英语阅读》2021-2022学年第一学期期末试卷
- 西南交通大学《数据结构实验》2022-2023学年第一学期期末试卷
- 【MOOC】机械设计-北京交通大学 中国大学慕课MOOC答案
- 电梯井脚手架专项施工方案样本
- 2024八大特殊作业安全管理培训
- Unit 4 Plants around us(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- Unit 5 The colourful world Part A Letters and sounds(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2024年国家公务员考试《申论》真题(地市级)及答案解析
- 2024-2025大学英语考试六级汉译英中英对照
- 2024版首诊负责制度课件
- 北京市西城区2023-2024学年高一上学期期末考试 语文 含答案
- 2024-2030年噬菌体行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2025学年重庆七中八年级(上)第一次月考物理试卷(含答案)
评论
0/150
提交评论