2023-2024学年北京市丰台区市级名校高一数学第二学期期末质量检测试题含解析_第1页
2023-2024学年北京市丰台区市级名校高一数学第二学期期末质量检测试题含解析_第2页
2023-2024学年北京市丰台区市级名校高一数学第二学期期末质量检测试题含解析_第3页
2023-2024学年北京市丰台区市级名校高一数学第二学期期末质量检测试题含解析_第4页
2023-2024学年北京市丰台区市级名校高一数学第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年北京市丰台区市级名校高一数学第二学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图像大致为()A. B. C. D.2.已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为A.5 B.4 C.2 D.13.一个长方体长、宽分别为5,4,且该长方体的外接球的表面积为,则该长方体的表面积为()A.47 B.60 C.94 D.1984.若x+2y=4,则2x+4y的最小值是()A.4 B.8 C.2 D.45.已知函数(其中为自然对数的底数),则的大致图象为()A. B. C. D.6.名小学生的身高(单位:cm)分成了甲、乙两组数据,甲组:115,122,105,111,109;乙组:125,132,115,121,119.两组数据中相等的数字特征是()A.中位数、极差 B.平均数、方差C.方差、极差 D.极差、平均数7.已知两条平行直线和之间的距离等于,则实数的值为()A. B. C.或 D.8.如图是一名篮球运动员在最近6场比赛中所得分数的茎叶图,则下列关于该运动员所得分数的说法错误的是()A.中位数为14 B.众数为13 C.平均数为15 D.方差为199.数列1,,,,…的一个通项公式为()A. B. C. D.10.三棱锥则二面角的大小为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为数列{an}的前n项和,且,,则{an}的首项的所有可能值为______12.给出下列四个命题:①正切函数在定义域内是增函数;②若函数,则对任意的实数都有;③函数的最小正周期是;④与的图象相同.以上四个命题中正确的有_________(填写所有正确命题的序号)13.在区间上,与角终边相同的角为__________.14.函数的图象过定点______.15.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.16.如图,四棱锥中,所有棱长均为2,是底面正方形中心,为中点,则直线与直线所成角的余弦值为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期及单调递增区间;(2)求在区间上的最大值和最小值.18.已知数列an满足an+1=2an(1)求证:数列bn(2)求数列an的前n项和为S19.设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.20.在中,角所对的边分别为,且.(1)求边长;(2)若的面积为,求边长.21.已知数列满足=(1)若求数列的通项公式;(2)若==对一切恒成立求实数取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

先判断函数为偶函数排除;再根据当时,,排除得到答案.【详解】,偶函数,排除;当时,,排除故选:【点睛】本题考查了函数图像的识别,通过函数的奇偶性和特殊函数点可以排除选项快速得到答案.2、C【解析】试题分析:由已知有,∴,∴.考点:1.两直线垂直的充要条件;2.均值定理的应用.3、C【解析】

根据球的表面积公式求得半径,利用等于体对角线长度的一半可构造方程求出长方体的高,进而根据长方体表面积公式可求得结果.【详解】设长方体高为,外接球半径为,则,解得:长方体外接球半径为其体对角线长度的一半解得:长方体表面积本题正确选项:【点睛】本题考查与外接球有关的长方体的表面积的求解问题,关键是能够明确长方体的外接球半径为其体对角线长度的一半,从而构造方程求出所需的棱长.4、B【解析】试题分析:由,当且仅当时,即等号成立,故选B.考点:基本不等式.5、D【解析】令,,所以函数在上单调递减,在上单调递增,又令,所以有两个零点,因为,,所以,且当时,,,当时,,,当时,,,选项C满足条件.故选C.点睛:本题考查函数的解析式和图象的关系、利用导数研究函数的单调性;已知函数的解析式识别函数图象是高考常见题型,往往从定义域、奇偶性(对称性)、单调性、最值及特殊点的符号进行验证,逐一验证进行排除.6、C【解析】

将甲、乙两组数据的极差、平均数、中位数、方差全部算出来,并进行比较,可得出答案.【详解】甲组数据由小到大排列依次为:、、、、,极差为,平均数为中位数为,方差为,乙组数据由小到大排列依次为:、、、、,极差为,平均数为中位数为,方差为,因此,两组数据相等的是极差和方差,故选C.【点睛】本题考查样本的数字特征,理解极差、平均数、中位数、方差的定义并利用相关公式进行计算是解本题的关键,考查计算能力,属于基础题.7、C【解析】

利用两条平行线之间的距离公式可求的值.【详解】两条平行线之间的距离为,故或,故选C.【点睛】一般地,平行线和之间的距离为,应用该公式时注意前面的系数要相等.8、D【解析】从题设中所提供的茎叶图可知六个数分别是,所以其中位数是,众数是,平均数,方差是,应选答案D.9、A【解析】

把数列化为,根据各项特点写出它的一个通项公式.【详解】数列…可以化为,所以该数列的一个通项公式为.故选:A【点睛】本题考查了根据数列各项特点写出它的一个通项公式的应用问题,是基础题目.10、B【解析】

P在底面的射影是斜边的中点,设AB中点为D过D作DE垂直AC,垂足为E,则∠PED即为二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【详解】因为AB=10,BC=8,CA=6所以底面为直角三角形又因为PA=PB=PC所以P在底面的射影为直角三角形ABC的外心,为AB中点.设AB中点为D过D作DE垂直AC,垂足为E,所以DE平行BC,且DEBC=4,所以∠PED即为二面角P﹣AC﹣B的平面角.因为PD为三角形PAB的中线,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小为60°故答案为60°.【点睛】本题考查的知识点是二面角的平面角及求法,确定出二面角的平面角是解答本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意,化简得,利用式相加,得到,进而得到,即可求解结果.【详解】因为,所以,所以,将以上各式相加,得,又,所以,解得或.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.12、②③④【解析】

①利用反例证明命题错误;②先判断为其中一条对称轴;③通过恒等变换化成;④对两个解析式进行变形,得到定义域和对应关系均一样.【详解】对①,当,显然,但,所以,不符合增函数的定义,故①错;对②,当时,,所以为的一条对称轴,当取,取时,显然两个数关于直线对称,所以,即成立,故②对;对③,,,故③对;对④,因为,,两个函数的定义域都是,解析式均为,所以函数图象相同,故④对.综上所述,故填:②③④.【点睛】本题对三角函数的定义域、值域、单调性、对称性、周期性等知识进行综合考查,求解过程中要注意数形结合思想的应用.13、【解析】

根据与终边相同的角可以表示为这一方法,即可得出结论.【详解】因为,所以与角终边相同的角为.【点睛】本题考查终边相同的角的表示方法,考查对基本概念以及基本知识的熟练程度,考查了数学运算能力,是简单题.14、【解析】

令真数为,求出的值,代入函数解析式可得出定点坐标.【详解】令,得,当时,.因此,函数的图象过定点.故答案为:.【点睛】本题考查对数型函数图象过定点问题,一般利用真数为来求得,考查计算能力,属于基础题.15、【解析】

先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.16、.【解析】

以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出直线与直线所成角的余弦值.【详解】解:四棱锥中,所有棱长均为2,是底面正方形中心,为中点,,平面,以为原点,为轴,为轴,为轴,建立如图所示的空间直角坐标系,则,,,,,∴,,设直线与直线所成角为,则,直线与直线所成角的余弦值为.故答案为:.【点睛】本题主要考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);单调递增区间为:;(2)最大值;最小值.【解析】

(1)先将函数化简整理,得到,由得到最小正周期;根据正弦函数的对称轴,即可列式,求出对称轴;(2)先由,得到,根据正弦函数的性质,即可得出结果.【详解】(1)因为,所以最小正周期为:;由得,即单调递增区间是:;(2)因为,所以,因此,当即时,取最小值;当即时,取最大值;【点睛】本题主要考查正弦型三角函数的周期、对称轴,以及给定区间的最值问题,熟记正弦函数的性质,以及辅助角公式即可,属于常考题型.18、(1)证明见解析;(2)S【解析】

(1)计算得到bn+1bn(2)根据(1)知an【详解】(1)因为bn+1b所以数列bn(2)因为bn=aSn【点睛】本题考查了等比数列的证明,分组求和,意在考查学生的计算能力和对于数列方法的灵活运用.19、(1);(2)见解析.【解析】

试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证,先设P(m,n),则需证,即根据条件可得,而,代入即得.试题解析:解:(1)设P(x,y),M(),则N(),由得.因为M()在C上,所以.因此点P的轨迹为.由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得-3m-+tn-=1,又由(1)知,故3+3m-tn=0.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的.定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.20、(1);(2).【解析】试题分析:本题主要考查正弦定理、余弦定理、特殊角的三角函数值、三角形面积公式等基础知识,同时考查考生的分析问题解决问题的能力和运算求解能力.第一问,利用正弦定理将边换成角,消去,解出角C,再利用解出边b的长;第二问,利用三角形面积公式,可直接解出a边的值,再利用余弦定理解出边c的长.试题解析:(Ⅰ)由正弦定理得,又,所以,.因为,所以.…6分(Ⅱ)因为,,所以.据余弦定理可得,所以.…12分考点:正弦定理、余弦定理、特殊角的三角函数值、三角形面积公式.21、(1)=;(2).【解析】

(1)由,结合可得数列为等差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论