版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省泉港区第二中学高一下数学期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为()A.5 B.10 C.15 D.202.在中,内角所对的边分别是.已知,,,则A. B. C. D.3.无穷数列1,3,6,10,…的通项公式为()A. B.C. D.4.已知函数图象的一条对称轴是,则函数的最大值为()A.5 B.3 C. D.5.命题“”的否定是()A., B.,C., D.,6.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2等于A.-10 B.-8 C.-6 D.-47.数列只有5项,分别是3,5,7,9,11,的一个通项公式为()A. B. C. D.8.已知{an}是等差数列,且a2+a5+a8+a11=48,则a6+a7=()A.12 B.16 C.20 D.249.在的二面角内,放置一个半径为3的球,该球切二面角的两个半平面于A,B两点,那么这两个切点在球面上的最短距离为()A. B. C. D.10.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akmC.akm D.2akm二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解为______.12.若,则的取值范围是________.13.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.14.已知,则15.在四面体A-BCD中,AB=AC=DB=DC=BC,且四面体A-BCD的最大体积为,则四面体A-BCD外接球的表面积为________.16.已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角对边分别为,,,已知.(1)求的值;(2)若,,求的面积.18.从某学校高三年级共800名男生中随机抽取50名学生作为样本测量身高.测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组;第二组;…;第八组.下图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组与第八组人数之和为第七组的两倍.(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;(2)求第六组和第七组的频率并补充完整频率分布直方图.19.已知是定义域为R的奇函数,当时,.Ⅰ求函数的单调递增区间;Ⅱ,函数零点的个数为,求函数的解析式.20.已知圆过点.(1)点,直线经过点A且平行于直线,求直线的方程;(2)若圆心的纵坐标为2,求圆的方程.21.在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.(1)若圆分别与轴、轴交于点、(不同于原点),求证:的面积为定值;(2)设直线与圆交于不同的两点、,且,求圆的方程;(3)设直线与(2)中所求圆交于点、,为直线上的动点,直线、与圆的另一个交点分别为、,求证:直线过定点.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用分层抽样的定义和方法求解即可.【详解】设应抽取的女生人数为,则,解得.故选B【点睛】本题主要考查分层抽样的定义及方法,意在考查学生对这些知识的理解掌握水平,属于基础题.2、B【解析】
由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.3、C【解析】试题分析:由累加法得:,分别相加得,,故选C.考点:数列的通项公式.4、B【解析】
函数图象的一条对称轴是,可得,解得.可得函数,再利用辅助角公式、倍角公式、三角函数的有界性即可得出.【详解】函数图象的一条对称轴是,,解得.则函数当时取等号.函数的最大值为1.故选.【点睛】本题主要考查三角函数的性质应用以及利用二倍角公式和辅助角公式进行三角恒等变换.5、B【解析】
含有一个量词的命题的否定,注意“改量词,否结论”.【详解】改为,改成,则有:.故选:B.【点睛】本题考查含一个量词的命题的否定,难度较易.6、C【解析】试题分析:有题可知,a1,a3,a4成等比数列,则有,又因为{an}是等差数列,故有,公差d=2,解得;考点:等差数列通项公式等比数列性质7、B【解析】
根据题意,得到数列为等差数列,通过首项和公差,得到通项.【详解】因为数列只有5项,分别是3,5,7,9,11,所以是以为首项,为公差的等差数列,.故选:B.【点睛】本题考查求等差数列的通项,属于简单题.8、D【解析】由等差数列的性质可得,则,故选D.9、A【解析】
根据题意,作出截面图,计算弧长即可.【详解】根据题意,作出该球过球心且经过A、B的截面图如下所示:由题可知:则,故满足题意的最短距离为弧长BA,在该弧所在的扇形中,弧长.故选:A.【点睛】本题考查弧长的计算公式,二面角的定义,属综合基础题.10、B【解析】
先根据题意确定的值,再由余弦定理可直接求得的值.【详解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故选:B.【点睛】本题主要考查余弦定理的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
由指数函数的性质得,由此能求出结果.【详解】方程,,或,解得或.故答案为或.【点睛】本题考查指数方程的解的求法,是基础题,解题时要认真审题,注意指数函数的性质的合理运用.12、【解析】
利用反函数的运算法则,定义及其性质,求解即可.【详解】由,得所以,又因为,所以.故答案为:【点睛】本题考查反余弦函数的运算法则,反函数的定义域,考查学生计算能力,属于基础题.13、0.4【解析】
根据几何概型的计算,反求阴影部分的面积即可.【详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【点睛】本题考查几何概型的概率计算公式,属基础题.14、28【解析】试题分析:由等差数列的前n项和公式,把等价转化为所以,然后求得a值.考点:极限及其运算15、【解析】
当面ABC面与BCD垂直时,四面体A-BCD的体积最大,根据最大体积为求出四面体的边长,又△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心位于的中点,从而得到半径,即可求解.【详解】如图所示:当面ABC面与BCD垂直时,四面体A-BCD的体积最大为,又AB=AC=DB=DC=BC,所以△ABC和△BCD是等腰直角三角形,所以四面体A-BCD外接球的球心为的中点,又,解得,,,所以四面体A-BCD外接球的半径故四面体A-BCD外接球的表面积为.【点睛】本题考查多面体的外接圆及相关计算,多面体外接圆问题关键在圆心和半径.16、.【解析】
根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】由题意四棱锥的底面是边长为的正方形,侧棱长均为,借助勾股定理,可知四棱锥的高为,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,故圆柱的体积为.【点睛】本题主要考查了圆柱与四棱锥的组合,考查了空间想象力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2(2)【解析】
(1)在题干等式中利用边化角思想,结合两角和的正弦公式、内角和定理以及诱导公式计算出,再利用角化边的思想可得出的比值;(2)由(1)中的结果,结合余弦定理求出和的值,再利用同角三角函数的平方关系求出,最后利用三角形的面积公式求出的面积.【详解】(1)由正弦定理得,则,所以,即,化简可得.又,所以.所以,即.(2)由(1)知.由余弦定理及,,得,.解得,因此因为,且所以因此.【点睛】在解三角形的问题时,要根据已知元素的类型合理选择正弦定理与余弦定理解三角形,除此之外,在有边和角的等式中,优先边化角,利用三角恒等变换思想化简求解,能起到简化计算的作用.18、(1)144人(2)频率分别为0.08和0.1,见解析【解析】
(1)由直方图求出前五组频率为0.82,后三组频率为,由此能求出这所学校高三男生身高在以上(含的人数.(2)由频率分布直方图得第八组频率为0.04,人数为2人,设第六组人数为,则第七组人数为,再由,得,即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.1.由此能求出结果.【详解】(1)由图知前5组频率为后三组频率为.全校高三男生身高在180cm以上的人有人.(2)如图知第八组频率为,人数为人.设第六组人数为m,后三组共9人.第七组人数为.,.即第六组4人,第七组3人,其频率分别为0.08和0.1,高度分别为0.016和0.012,如图所示.【点睛】本题考查频率分布直方图的应用,频率分布直方图的性质等基础知识,考查数据处理能力,属于基础题.19、Ⅰ见解析;(Ⅱ)【解析】
Ⅰ利用函数的奇偶性,利用对称性,写出函数的解析式;然后求解增区间.Ⅱ求出函数的表达式,利用数形结合求解函数的解析式.【详解】解:Ⅰ当时,,是奇函数,,,.当时,函数开口向上,增区间是:;当时,函数是二次函数,开口向下,增区间是:;函数的单调增区间为:,;Ⅱ当时,,最小值为;当时,,最大值为1.据此可作出函数的图象,根据图象得,若方程恰有3个不同的解,则a的取值范围是此时时,,或时,.所以.【点睛】本题主要考查函数奇偶性的应用,以及方程根的个数问题,利用数形结合是解决本题的关键.20、(1);(2).【解析】
(1)求出直线的斜率,由直线与直线平行,可知这两条直线的斜率相等,再利用点斜式可得出直线的方程;(2)由题意得出点在线段的中垂线上,可求出点的坐标,再利用两点间的距离公式求出圆的半径,于此可写出圆的标准方程.【详解】(1)直线过点,斜率为,所以直线的方程为,即;(2)由圆的对称性可知,必在线段的中垂线上,圆心的横坐标为:,即圆心为:,圆的半径:,圆的标准方程为:.【点睛】本题考查直线的方程,考查圆的方程的求解,在求解直线与圆的方程中,充分分析直线与圆的几何要素,能起到简化计算的作用,考查计算能力,属于中等题.21、(1)证明见解析;(2);(3)证明见解析.【解析】
(1)由题意设圆心坐标为,可得半径为,求出圆的方程,分别令、,可得出点、的坐标,利用三角形的面积公式即可证明出结论成立;(2)由,知,利用两直线垂直的等价条件:斜率之积为,解方程可得,讨论的取值,求得圆心到直线的距离,即可得到所求圆的方程;(3)设,、,求得、的坐标,以及直线、的方程,联立圆的方程,利用韦达定理,结合,得出,设直线的方程为,代入圆的方程,利用韦达定理,可得、之间的关系,即可得出所求的定点.【详解】(1)由题意可设圆心为,则圆的半径为,则圆的方程为,即.令,得,得;令,得,得.(定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 04建筑材料供应与质量检测合同
- 2024年城市公共交通设施采购合同
- 2024年城市住宅建设合同
- 2024年光伏设备及系统订购合同
- 2024年小家电订购合同范本
- 2024年工程公开招标代理合同
- 2024年工程轻工业品供应协议
- 2024年定制陶瓷艺术品制作合同
- 2024双方关于购买共有产权房的买卖协议
- 2024年光伏发电并网10KV线路建设工程合同
- 竞聘团委书记演讲.doc
- 煤矿安全数字化智能巡检系统
- 广告宣传费用巧筹划三个方案
- 模板支架及脚手架安全使用培训课件
- 企业财产保险投保单
- 柿子品种介绍PPT课件
- 内镜清洁消毒登记表格模板
- 天然气脱硫(课堂运用)
- 幼儿园教师师德师风考核表(共2页)
- 城镇职工医疗保险运行中的问题分析及措施
- 学校食堂五常法管理制度
评论
0/150
提交评论