湖南省邵阳县第一中学2023-2024学年高一数学第二学期期末调研模拟试题含解析_第1页
湖南省邵阳县第一中学2023-2024学年高一数学第二学期期末调研模拟试题含解析_第2页
湖南省邵阳县第一中学2023-2024学年高一数学第二学期期末调研模拟试题含解析_第3页
湖南省邵阳县第一中学2023-2024学年高一数学第二学期期末调研模拟试题含解析_第4页
湖南省邵阳县第一中学2023-2024学年高一数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵阳县第一中学2023-2024学年高一数学第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则下列不等式中成立的是()A. B. C. D.2.设变量满足约束条件,则目标函数的最大值为()A.3 B.4 C.18 D.403.右图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.4.如果点位于第四象限,则角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角5.在中,,,,则的面积是()A. B. C.或 D.或6.已知三个内角、、的对边分别是,若则的面积等于()A. B. C. D.7.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是()A.12.5;12.5 B.13;13 C.13;12.5 D.12.5;138.已知某线路公交车从6:30首发,每5分钟一班,甲、乙两同学都从起点站坐车去学校,若甲每天到起点站的时间是在6:30~7:00任意时刻随机到达,乙每天到起点站的时间是在6:45~7:15任意时刻随机到达,那么甲、乙两人搭乘同一辆公交车的概率是()A. B. C. D.9.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于()A. B. C. D.10.等差数列的前项和为.若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,边长为2的菱形的对角线相交于点,点在线段上运动,若,则的最小值为_______.12.等比数列前n项和为,若,则______.13.(理)已知函数,若对恒成立,则的取值范围为.14.已知角满足,则_____15.已知实数满足约束条件,若目标函数仅在点处取得最小值,则的取值范围是__________.16.一水平位置的平面图形的斜二测直观图是一个底平行于轴,底角为,两腰和上底长均为1的等腰梯形,则这个平面图形的面积是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,.(1)若,求证:数列为等比数列.(2)若,求.18.设平面三点、、.(1)试求向量的模;(2)若向量与的夹角为,求;(3)求向量在上的投影.19.已知数列的前项和,函数对任意的都有,数列满足.(1)求数列,的通项公式;(2)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在请求出的取值范围;若不存在请说明理由.20.在中,角对应的边分别是,且.(1)求角;(2)若,求的取值范围.21.已知函数为奇函数.(1)求实数的值并证明函数的单调性;(2)解关于不等式:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由,,计算可判断;由,,计算可判断;由,可判断;作差可判断.【详解】解:,当,时,可得,故错误;当,时,,故错误;当,,故错误;,即,故正确.故选:.【点睛】本题考查不等式的性质,考查特殊值的运用,以及运算能力,属于基础题.2、C【解析】不等式所表示的平面区域如下图所示,当所表示直线经过点时,有最大值考点:线性规划.3、D【解析】

由三视图可知,该几何体为棱长为2的正方体截去一个三棱锥,由正方体的体积减去三棱锥的体积求解.【详解】根据三视图,可知原几何体如下图所示,该几何体为棱长为的正方体截去一个三棱锥,则该几何体的体积为.故选:D.【点睛】本题考查了几何体三视图的应用问题以及几何体体积的求法,关键是根据三视图还原原来的空间几何体,是中档题.4、C【解析】

由点位于第四象限列不等式,即可判断的正负,问题得解.【详解】因为点位于第四象限所以,所以所以角是第三象限角故选C【点睛】本题主要考查了点的坐标与点的位置的关系,还考查了等价转化思想及三角函数值的正负与角的终边的关系,属于基础题.5、C【解析】

先根据正弦定理求出角,从而求出角,再根据三角形的面积公式进行求解即可.【详解】解:由,,,根据正弦定理得:,为三角形的内角,或,或在中,由,,或则面积或.故选C.【点睛】本题主要考查了正弦定理,三角形的面积公式以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键,属于中档题.6、B【解析】

根据三角的面积公式求解.【详解】,故选.【点睛】本题考查三角形的面积计算.三角形有两个面积公式:和,选择合适的进行计算.7、D【解析】分析:根据频率分布直方图中众数与中位数的定义和计算方法,即可求解频率分布直方图的众数与中位数的值.详解:由题意,频率分布直方图中最高矩形的底边的中点的横坐标为数据的众数,所以中间一个矩形最该,故数据的众数为,而中位数是把频率分布直方图分成两个面积相等部分的平行于轴的直线横坐标,第一个矩形的面积为,第二个矩形的面积为,故将第二个矩形分成即可,所以中位数是,故选D.点睛:本题主要考查了频率分布直方图的中位数与众数的求解,其中频率分布直方图中小矩形的面积等于对应的概率,且各个小矩形的面积之和为1是解答的关键,着重考查了推理与计算能力.8、D【解析】

根据甲、乙的到达时间,作出可行域,然后考虑甲、乙能同乘一辆公交车对应的区域面积,根据几何概型的概率求解方法即可求解出对应概率.【详解】设甲到起点站的时间为:时分,乙到起点站的时间为时分,所以,记事件为甲乙搭乘同一辆公交车,所以,作出可行域以及目标区域如图所示:由几何概型的概率计算可知:.故选:D.【点睛】本题考查利用线性规划的可行域解决几何概型中的面积模型问题,对于分析和转化的能力要求较高,注意几何概型中面积模型的概率计算方法,难度较难.9、D【解析】

在三角形中,利用正弦定理求得,然后在三角形中求得.【详解】在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=.在Rt△ABC中,AB=BCtan∠ACB=15×=15.故选:D【点睛】本小题主要考查正弦定理解三角形,考查解直角三角形,属于基础题.10、D【解析】

根据等差数列片段和成等差数列,可得到,代入求得结果.【详解】由等差数列性质知:,,,成等差数列,即:本题正确选项:【点睛】本题考查等差数列片段和性质的应用,关键是根据片段和成等差数列得到项之间的关系,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

以为原点建立平面直角坐标系,利用计算出两点的坐标,设出点坐标,由此计算出的表达式,,进而求得最值.【详解】以为原点建立平面直角坐标系如下图所示,设,则①,由得②,由①②解得,故.设,则,当时取得最小值为.故填:.【点睛】本小题主要考查平面向量的坐标运算,考查向量数量积的坐标表示以及数量积求最值,考查二次函数的性质,考查数形结合的数学思想方法,属于中档题.12、【解析】

根据等比数列的性质得到成等比,从而列出关系式,又,接着用表示,代入到关系式中,可求出的值.【详解】因为等比数列的前n项和为,则成等比,且,所以,又因为,即,所以,整理得.故答案为:.【点睛】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。解决本题的关键是根据等比数列的性质得到成等比.13、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.14、【解析】

利用诱导公式以及两角和与差的三角公式,化简求解即可.【详解】解:角满足,可得

则.

故答案为:.【点睛】本题考查两角和与差的三角公式,诱导公式的应用,考查计算能力,是基础题.15、【解析】

利用数形结合,讨论的范围,比较斜率大小,可得结果.【详解】如图,当时,,则在点处取最小值,符合当时,令,要在点处取最小值,则当时,要在点处取最小值,则综上所述:故答案为:【点睛】本题考查目标函数中含参数的线性规划问题,难点在于寻找斜率之间的关系,属中档题.16、【解析】如图过点作,,则四边形是一个内角为45°的平行四边形且,中,,则对应可得四边形是矩形且,是直角三角形,.所以三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)答案见解析【解析】

(1)证明即可;(2)化简,讨论,和即可求解【详解】因为,所以,所以.又所以数列是以3为首项,9为公比的等比数列.(2)因为,所以,所以:当时,当时,.当时,.【点睛】本题考查等比数列的证明,极限的运算,注意分类讨论的应用,是中档题18、(1);(2);(3).【解析】

(1)计算出、的坐标,可计算出的坐标,再利用平面向量模长的坐标表示可计算出向量的模;(2)由可计算出的值;(3)由投影的定义得出向量在上的投影为可计算出结果.【详解】(1)、、,,,因此,;(2)由(1)知,,,所以;(3)由(2)知向量与的夹角的余弦为,且.所以向量在上的投影为.【点睛】本题考查平面向量的坐标运算以及平面向量夹角的坐标表示、以及向量投影的计算,解题时要熟悉平面向量坐标的运算律以及平面向量数量积、模、夹角的坐标运算,考查计算能力,属于基础题.19、(1),;(2).【解析】分析:(1)利用的关系,求解;倒序相加求。(2)先用错位相减求,分离参数,使得对于一切的恒成立,转化为求的最值。详解:(1)时满足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,②①-②得即要使得不等式恒成立,恒成立对于一切的恒成立,即,令,则当且仅当时等号成立,故所以为所求.点睛:1、,一定要注意,当时要验证是否满足数列。2、等比乘等差结构的数列用错位相减。3、数列中的恒成立问题与函数中的恒成立问题解法一致。20、(1);(2).【解析】

(1)依照条件形式,使用正弦定理化角为边,再用余弦定理求出,从而得出角的值;(2)先利用余弦定理找出的关系,再利用基本不等式放缩,求出的取值范围.【详解】(1)由及正弦定理得,,由余弦定理得,又,所以(2)由及,得,即所以,所以,当且仅当时,等号成立,又,所以.【点睛】本题主要考查利用正余弦定理解三角形,以及利用基本不等式求等式条件下的取值范围问题,第二问也可以采用正弦定理化边为角,利用“

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论