下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
雅安天立高2021级2023-2024学年度下期高考适应性考试(三)数学(理科)本试卷分为试题卷和答题卡两部分,满分150分,考试时间120分钟。注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡和试卷指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。3.考试结束后,将答题卡交回。第Ⅰ卷(选择题共60分)选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一个是符合题目要求的。1.已知集合,,则()A. B. C. D.2.欧拉公式把自然对数的底数,虚数单位i,cosθ和sinθ联系在一起,充分体现了数学的和谐美,被誉为“数学中的天桥”,若复数满足,则正确的是()A.的共轭复数为B.的实部为1 C.的虚部为i D.的模为13.在的展开式中,含项的系数是()A.16 B.19 C.21 D.244.已知角的终边经过点,则()A.B.C.D.5.执行下面的程序框图,输出的()A.B.C.D.6.已知向量,为坐标原点,动点满足约束条件,则的最大值为()A. B.2 C. D.37.2023年7月28日至8月8日,第31届世界夏季大学生运动会在成都市举行,组委会将5名大学生分配到A,B,C三个路口进行引导工作,每个路口至少分配一人,每人只能去一个路口.若甲、乙要求去同一个路口,则不同的分配方案共有()A.18种 B.24种 C.36种 D.48种8.α,β,γ为不同的平面,m,n,l为不同的直线,则m⊥β的一个充分条件是A. B.C. D.9.如今我国物流行业蓬勃发展,极大地促进了社会经济发展和资源整合.已知某类果蔬的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系.(a,b.为常数),若该果蔬在7℃的保鲜时间为288小时,在21℃的保鲜时间为32小时,且该果蔬所需物流时间为4天,则物流过程中果蔬的储藏温度(假设物流过程中恒温)最高不能超过()A.14℃ B.15℃ C.13℃ D.16℃10.如图是以正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”,若该多面体的棱长为,则该多面体外接球的表面积为()A.B.C.D.11.设是双曲线的左、右焦点,O是坐标原点,点P是C上异于实轴端点的任意一点,若则C的离心率为()A. B. C.3 D.212.已知函数及其导函数的定义域均为,且,,则不等式的解集是()A. B. C. D.第Ⅱ卷(非选择题共90分)填空题:本大题共4小题,每小题5分,共20分,将答案书写在答题卡对应题号的横线上。13.已知为偶函数,则______.14.已知的三边长,则的面积为_______.15.已知两点,若直线上存在唯一点P满足,则实数m的值为__________.16.已知F为抛物线的焦点,过点F的直线l与抛物线C相交于不同的两点A、B,若抛物线C在A、B两点处的切线相交于点P,则的最小值为_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题每题12分,第22题10分.17.已知为各项均为正数的数列的前项和,.(1)求的通项公式;(2)设,数列的前项和为,若对恒成立,求实数的最大值.18.某校高三年级进行班级数学文化知识竞赛,每班选三人组成代表队,其中1班和2班进入最终的决赛.决赛第一轮要求两个班级的代表队队员每人回答一道必答题,答对则为本班得1分,答错或不答都得0分.已知1班的三名队员答对的概率分别为、、,班的三名队员答对的概率都是,每名队员回答正确与否相互之间没有影响.用、分别表示1班和2班的总得分.(1)求随机变量、的数学期望;(2)若,求2班比1班得分高的概率.19.如图,在多面体中,四边形为菱形,平面平面,平面平面,是等腰直角三角形,且.(1)证明:平面平面;(2)若,求平面与平面所成锐二面角的余弦值的取值范围.20.已知椭圆的离心率为其左右焦点分别为下顶点为A,右顶点为B,的面积为(1)求椭圆C的方程;(2)设不过原点O的直线交C于M、N两点,且直线的斜率依次成等比数列,求面积的取值范围.21.设函数,.(1)试研究在区间上的极值点;(2)当时,,求实数a的取值范围.22.在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程与直线的直角坐标方程;(2)点分别为曲线与直线上的动点,求的最小值.
雅安天立高2021级2023-2024学年度下期高考适应性考试(三)数学(理科)(答案)1B2D3B4A5A6D7C提示:8A9A10A将“阿基米德多面体”补全正方体,如下图所示:不妨取两棱中点为,由题知,易知,可得,所以正方体的棱长为2,该多面体的外接球即为正方体的棱切球,所以棱切球的直径为该正方体的面对角线,长度为。该多面体的外接球的半径为,所以其表面积.故选:A11D令双曲线的焦点,设,则,,同理,而,故,,即,所以双曲线C的离心率.12C构造函数,则;因为,所以当时,,即,此时在上单调递增;当时,,即,此时在上单调递减;又,所以,即;所以函数图象上的点关于的对称点也在函数图象上,即函数图象关于直线对称,不等式变形为,;可得,又在上单调递增,在上单调递减,所以,解得.故选:C1314.15答案设点,则,由,得,因此点在以原点为圆心,1为半径的圆上,显然直线与此圆相切,则,解得,所以实数m的值为.故答案为:16【答案5】由抛物线可知,显然直线的斜率一定存在,可设直线的方程为,;联立抛物线和直线的方程,消去可得;由韦达定理可得;利用焦点弦公式可;由可得,求导可得,所以抛物线在点处的切线方程为,由,整理可得;同理可得点处的切线方程为;联立解得,即;可得;所以,令,则;利用对勾函数性质可知函数在上单调递增,所以,当且仅当时,等号成立;即的最小值为5.17解:当时,由题设得,即,又,解得.由知:.两式相减得:,即.由于,可得,即,所以是首项为,公差为的等差数列,所以.【小问2详解】由得:.因为,所以,则数列是递增数列,所以,故实数的最大值是.18【答案】(1)模19(1).证明如图,取的中点,连接.因为,平面平面,平面平面,所以平面.同理,平面.所以.又和是等腰直角三角形,所以,四边形为平行四边形,所以,又因为,所以平面平面.(2)解:如图,以点为原点,所在直线为轴,过平行于的直线为轴,在平面内垂直于的直线为轴,建立空间直角坐标系.设,.所以.设平面的法向量为,则令,得,所以.设平面的法向量为,则令,得,所以.所以.设,则,所以在上单调递减,所以所以,所以平面与平面所成锐二面角的取值范围是.20【答案】【小问1详解】依题意,又,又,所以,所以椭圆C的方程为.【小问2详解】由题意可知,直线的斜率存在且不为0,故可设直线:,,联立直线和椭圆,化简得,由题意可知,即,且,则,又直线的斜率依次成等比数列。即,则,所以且,设点O到直线的距离为,,所以,令,,显然在上为增函数,在上为减函数,所以,即,所,故面积的取值范围为21【答案】【小问1详解】函数,求导得,令,求导得,设,则,当时,,当且仅当时取等号,则在上单调递增,即有,于函数在上单调递增,因此,所以在区间上没有极值点.【小问2详解】由(1)知,当,则,设,求导得,设,求导得,则函数在上单调递增,有,即,函数在上单调递增,于是,即,则对任意的恒成立,当时,,则当时,对任意的恒成立,当时,设,求导得,显然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年保证金质押协议范本:金融交易保障协议版B版
- 2024年度企业人力资源外包服务战略合作合同版B版
- 2024年度仔猪交易协议模板版B版
- 2024年度人工智能语音助手技术开发合同
- 2024年度国内快递物流服务协议范本版
- 2024年度劳动合同岗位说明与薪资福利(综合版)2篇
- 2024年学校教职工聘用协议样本版B版
- 2024商业买卖标准协议简版版B版
- 2024年定制项目资料包揽协议电子版版B版
- 2024借款抵押合同与借款抵押合同范本
- 婴幼儿发展引导员理论考核试题及答案
- 教师个人职业生涯发展规划述职报告5篇
- 创业管理实战试题库答案
- 2024年人教版小学三年级信息技术(下册)期末考卷附答案
- 科技成果转化合作协议书
- 港口码头安全生产风险分级管控和隐患排查治理双体系方案全套资料(2021-2022版)
- 福建农信(农商银行、农信社)招聘笔试真题2022
- 军事理论-综合版智慧树知到期末考试答案章节答案2024年国防大学
- YC/T 310-2024烟草漂浮育苗基质
- 2024年4月高等教育自学考试全国统一命题考试法学概论试卷含解析
- 中药山药课件
评论
0/150
提交评论