版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2016年05月09日去括号与添括号一.选择题(共18小题)1.(2016•蒙城县模拟)下面的计算正确的是()A.6a﹣5a=1 B.=±6 C.()﹣1=﹣2 D.2(a+b)=2a+2b2.(2016春•迁安市校级月考)下列等式成立的是()A.﹣(3m﹣1)=﹣3m﹣1 B.3x﹣(2x﹣1)=3x﹣2x+1C.5(a﹣b)=5a﹣b D.7﹣(x+4y)=7﹣x+4y3.(2015•济宁)化简﹣16(x﹣0.5)的结果是()A.﹣16x﹣0.5 B.﹣16x+0.5 C.16x﹣8 D.﹣16x+84.(2015秋•河东区期末)已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1 B.5 C.﹣5 D.﹣15.(2015秋•端州区期末)下列式子正确的是()A.x﹣(y﹣z)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+2y﹣2z=x﹣2(z+y) D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)6.(2015秋•上杭县期中)下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c7.(2015秋•禹州市期末)下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d8.(2015秋•普宁市期末)下列各式中,去括号正确的是()A.x2﹣(2y﹣x+z)=x2﹣2y2﹣x+z B.3a﹣[6a﹣(4a﹣1)]=3a﹣6a﹣4a+1C.2a+(﹣6x+4y﹣2)=2a﹣6x+4y﹣2 D.﹣(2x2﹣y)+(z﹣1)=﹣2x2﹣y﹣z﹣19.(2015秋•西城区期末)下列各式中正确的是()A.﹣(2x+5)=﹣2x+5 B.﹣(4x﹣2)=﹣2x+2C.﹣a+b=﹣(a﹣b) D.2﹣3x=﹣(3x+2)10.(2015秋•钦州校级期末)﹣[x﹣(y﹣z)]去括号后应得()A.﹣x+y﹣z B.﹣x﹣y+z C.﹣x﹣y﹣z D.﹣x+y+z11.(2015秋•单县期末)下列变形中,错误的是()A.﹣x+y=﹣(x﹣y) B.﹣x﹣y=﹣(y+x) C.a+(b﹣c)=a+b﹣c D.a﹣(b﹣c)=a﹣b﹣c12.(2015秋•天水期末)下列各式中,添括号正确的是()A.a+b﹣c=a+(b+c) B.a﹣b﹣c=a﹣(b+c) C.a﹣b﹣c=a﹣(b﹣c) D.a﹣b=﹣(a+b)13.(2015秋•农安县期末)(a+b﹣c)(a﹣b﹣c)=[a+□][a﹣□],□里所填的各项分别是()A.b﹣c,b+c B.﹣b+c,b﹣c C.b﹣c,b﹣c D.﹣b+c,b+c14.(2015秋•包河区期中)下列各式去括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+c B.﹣(x﹣y)+(xy﹣1)=﹣x﹣y+xy﹣1C.a﹣(3b﹣2c)=a﹣3b﹣2c D.9y2﹣[x﹣(5z+4)]=9y2﹣x+5z+415.(2015秋•无棣县期中)下列各组代数式中,互为相反数的有()①a﹣b与﹣a﹣b;②a+b与﹣a﹣b;③a+1与1﹣a;④﹣a+b与a﹣b.A.①②④ B.②④ C.①③ D.③④16.(2015秋•北京校级期中)下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.A.1个 B.2个 C.3个 D.4个17.(2015秋•北京校级期中)下列式子中去括号错误的是()A.5x﹣(x﹣2y+5z)=5x﹣x+2y﹣5zB.2a2+(﹣3a﹣b)﹣(3c﹣2d)=2a2﹣3a﹣b﹣3c+2dC.3x2﹣3(x+6)=3x2﹣3x﹣6D.﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y218.(2015秋•北京校级期中)下列去(添)括号正确做法的有()A.x﹣(y﹣x)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+2y﹣2z=x﹣2(y﹣z) D.﹣a+c+d+b=﹣(a﹣b)+(c+d)二.解答题(共12小题)19.化简:(1)3(x﹣0.5)(2)(3)(4).20.化简下列各数的符号:(1)﹣(﹣);(2)﹣(+);(3)+(+3);(4)﹣[﹣(+9)].21.先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2﹣(a+b)﹣(a+b)2+(﹣3)2(a+b).22.去括号,合并同类项:﹣(a﹣b)+(4a﹣3b﹣c)﹣(5a+3b﹣c).23.先去括号,再合并同类项:﹣2n﹣(3n﹣1);a﹣(5a﹣3b)+(2b﹣a);﹣3(2a﹣5)+6a;1﹣(2a﹣1)﹣(3a+3);3(﹣ab+2a)﹣(3a﹣b);14(abc﹣2a)+3(6a﹣2abc).24.将下列各式去括号,并合并同类项.(1)(7y﹣2x)﹣(7x﹣4y)(2)(﹣b+3a)﹣(a﹣b)(3)(2x﹣5y)﹣(3x﹣5y+1)(4)2(2﹣7x)﹣3(6x+5)(5)(﹣8x2+6x)﹣5(x2﹣x+)(6)(3a2+2a﹣1)﹣2(a2﹣3a﹣5)25.去括号:﹣(2m﹣3);n﹣3(4﹣2m);16a﹣8(3b+4c);﹣(x+y)+(p+q);﹣8(3a﹣2ab+4);4(rn+p)﹣7(n﹣2q).26.先去括号,再合并同类项:6a2﹣2ab﹣2(3a2﹣ab);2(2a﹣b)﹣[4b﹣(﹣2a+b)];9a3﹣[﹣6a2+2(a3﹣a2)];2t﹣[t﹣(t2﹣t﹣3)﹣2]+(2t2﹣3t+1).27.先去括号,再合并同类项:(1)(x+y﹣z)+(x﹣y+z)﹣(x﹣y﹣z);(2)3(2x2﹣y2)﹣2(3y2﹣2x2).28.给下列多项式添括号.使它们的最高次项系数变为正数:(1)﹣x2+x=;(2)3x2﹣2xy2+2y2=;(3)﹣a3+2a2﹣a+1=;(4)﹣3x2y2﹣2x3+y3=.29.去括号,合并同类项:(1)(x﹣2y)﹣(y﹣3x);(2).30.先去括号,后合并同类项:(1)x+[﹣x﹣2(x﹣2y)];(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]}.
2016年05月09日去括号与添括号参考答案与试题解析一.选择题(共18小题)1.(2016•蒙城县模拟)下面的计算正确的是()A.6a﹣5a=1 B.=±6 C.()﹣1=﹣2 D.2(a+b)=2a+2b【考点】去括号与添括号;算术平方根;合并同类项;负整数指数幂.【分析】分别利用合并同类项法则和算术平方根、去括号法则分别化简求出即可.【解答】解;A、6a﹣5a=a,故此选项错误;B、=6,故此选项错误;C、()﹣1=2,故此选项错误;D、2(a+b)=2a+2b,正确.故选:D.【点评】此题主要考查了合并同类项法则和算术平方根、去括号法则等知识,正确掌握运算法则是解题关键.2.(2016春•迁安市校级月考)下列等式成立的是()A.﹣(3m﹣1)=﹣3m﹣1 B.3x﹣(2x﹣1)=3x﹣2x+1C.5(a﹣b)=5a﹣b D.7﹣(x+4y)=7﹣x+4y【考点】去括号与添括号.【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、﹣(3m﹣1)=﹣3m+1,故本选项错误;B、3x﹣(2x﹣1)=3x﹣2x+1,故本选项正确;C、5(a﹣b)=5a﹣5b,故本选项错误;D、7﹣(x+4y)=7﹣x﹣4y,故本选项错误;故选B.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.3.(2015•济宁)化简﹣16(x﹣0.5)的结果是()A.﹣16x﹣0.5 B.﹣16x+0.5 C.16x﹣8 D.﹣16x+8【考点】去括号与添括号.【分析】根据去括号的法则计算即可.【解答】解:﹣16(x﹣0.5)=﹣16x+8,故选:D.【点评】此题考查去括号,关键是根据括号外是负号,去括号时应该变号.4.(2015秋•河东区期末)已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A.1 B.5 C.﹣5 D.﹣1【考点】去括号与添括号.【分析】先把括号去掉,重新组合后再添括号.【解答】解:因为(b+c)﹣(a﹣d)=b+c﹣a+d=(b﹣a)+(c+d)=﹣(a﹣b)+(c+d)…(1),所以把a﹣b=﹣3、c+d=2代入(1)得:原式=﹣(﹣3)+2=5.故选:B.【点评】(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去括号;(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“﹣”,括号里的各项都改变符号.运用这一法则添括号.5.(2015秋•端州区期末)下列式子正确的是()A.x﹣(y﹣z)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+2y﹣2z=x﹣2(z+y) D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)【考点】去括号与添括号.【分析】根据去括号和添括号法则选择.【解答】解:A、x﹣(y﹣z)=x﹣y+z,错误;B、﹣(x﹣y+z)=﹣x+y﹣z,括号前是“﹣”,去括号后,括号里的各项都改变符号,错误;C、x+2y﹣2z=x﹣2(z﹣y),添括号后,括号前是“﹣”,括号里的各项都改变符号,错误;D、正确.故选D.【点评】运用(1)括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号;(2)添括号后,括号前是“+”,括号里的各项都不改变符号,添括号后,括号前是“﹣”,括号里的各项都改变符号.运用这一法则添掉括号.6.(2015秋•上杭县期中)下列去括号正确的是()A.﹣(a+b﹣c)=﹣a+b﹣c B.﹣2(a+b﹣3c)=﹣2a﹣2b+6cC.﹣(﹣a﹣b﹣c)=﹣a+b+c D.﹣(a﹣b﹣c)=﹣a+b﹣c【考点】去括号与添括号.【分析】利用去括号添括号法则计算.【解答】解:A、﹣(a+b﹣c)=﹣a﹣b+c,故不对;B、正确;C、﹣(﹣a﹣b﹣c)=a+b+c,故不对;D、﹣(a﹣b﹣c)=﹣a+b+c,故不对.故选B.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.7.(2015秋•禹州市期末)下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣[﹣(﹣x+y)]=x2﹣x+yC.m﹣2(p﹣q)=m﹣2p+q D.a+(b﹣c﹣2d)=a+b﹣c+2d【考点】去括号与添括号.【分析】根据去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,分别进行各选项的判断即可.【解答】解:A、a﹣(b﹣c)=a﹣b+c,原式计算错误,故本选项错误;B、x2﹣[﹣(﹣x+y)]=x2﹣x+y,原式计算正确,故本选项正确;C、m﹣2(p﹣q)=m﹣2p+2q,原式计算错误,故本选项错误;D、a+(b﹣c﹣2d)=a+b﹣c﹣2d,原式计算错误,故本选项错误;故选B.【点评】本题考查了去括号得知识,属于基础题,掌握去括号得法则是解答本题的关键.8.(2015秋•普宁市期末)下列各式中,去括号正确的是()A.x2﹣(2y﹣x+z)=x2﹣2y2﹣x+z B.3a﹣[6a﹣(4a﹣1)]=3a﹣6a﹣4a+1C.2a+(﹣6x+4y﹣2)=2a﹣6x+4y﹣2 D.﹣(2x2﹣y)+(z﹣1)=﹣2x2﹣y﹣z﹣1【考点】去括号与添括号.【分析】根据括号前面是“+”号的去添括号,符号不变,括号前面是“﹣”号的去添括号,括号里面的各项都要改变.【解答】解:A、x2﹣(2y﹣x+z)=x2﹣2y2+x﹣z,故此选项错误;B、3a﹣[6a﹣(4a﹣1)]=3a﹣6a+4a﹣1,故此选项错误;C、2a+(﹣6x+4y﹣2)=2a﹣6x+4y﹣2,此选项正确;D、﹣(2x2﹣y)+(z﹣1)=﹣2x2+y+z﹣1,故此选项错误.故选C.【点评】本题主要考查了去括号法则.注意去括号时括号前面是“+”号的去添括号,符号不变,括号前面是“﹣”号的去添括号,括号里面的各项都要改变.9.(2015秋•西城区期末)下列各式中正确的是()A.﹣(2x+5)=﹣2x+5 B.﹣(4x﹣2)=﹣2x+2C.﹣a+b=﹣(a﹣b) D.2﹣3x=﹣(3x+2)【考点】去括号与添括号.【分析】分别根据去括号与添括号的法则判断各选项即可.【解答】解:A、﹣(2x+5)=﹣2x﹣5,故本选项错误;B、﹣(4x﹣2)=﹣2x+1,故本选项错误;C、﹣a+b=﹣(a﹣b),故本选项正确;D、2﹣3x=﹣(3x﹣2),故本选项错误.故选C.【点评】本题考查去括号与添括号的知识,注意掌握去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验.10.(2015秋•钦州校级期末)﹣[x﹣(y﹣z)]去括号后应得()A.﹣x+y﹣z B.﹣x﹣y+z C.﹣x﹣y﹣z D.﹣x+y+z【考点】去括号与添括号.【分析】根据去括号规律:括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.依次去掉小括号,再去掉中括号.【解答】解:﹣[x﹣(y﹣z)]=﹣(x﹣y+z)=﹣x+y﹣z.故选:A.【点评】此题主要考查了去括号,关键是掌握去括号规律:括号前是“+”号,去括号时连同它前面的“+”号一起去掉,括号内各项不变号;括号前是“﹣”号,去括号时连同它前面的“﹣”号一起去掉,括号内各项都要变号.11.(2015秋•单县期末)下列变形中,错误的是()A.﹣x+y=﹣(x﹣y) B.﹣x﹣y=﹣(y+x) C.a+(b﹣c)=a+b﹣c D.a﹣(b﹣c)=a﹣b﹣c【考点】去括号与添括号.【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、﹣x+y=﹣(x﹣y),正确,不符合题意;B、x﹣y=﹣(y+x),正确,不符合题意;C、+(b﹣c)=a+b﹣c,正确,不符合题意;D、a﹣(b﹣c)=a﹣b+c,错误,符合题意.故选D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.12.(2015秋•天水期末)下列各式中,添括号正确的是()A.a+b﹣c=a+(b+c) B.a﹣b﹣c=a﹣(b+c) C.a﹣b﹣c=a﹣(b﹣c) D.a﹣b=﹣(a+b)【考点】去括号与添括号.【分析】根据添括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、a+b﹣c=a+(b﹣c),故本选项错误;B、a﹣b﹣c=a﹣(b+c),正确;C、a﹣b﹣c=a﹣(b+c),故本选项错误;D、a﹣b=﹣(﹣a+b),故本选项错误;故选:B.【点评】本题考查去括号和添括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.13.(2015秋•农安县期末)(a+b﹣c)(a﹣b﹣c)=[a+□][a﹣□],□里所填的各项分别是()A.b﹣c,b+c B.﹣b+c,b﹣c C.b﹣c,b﹣c D.﹣b+c,b+c【考点】去括号与添括号.【分析】根据括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号,即可得出答案.【解答】解:(a+b﹣c)(a﹣b﹣c)=[a+(b﹣c)][a﹣(b+c)].故答案为:b﹣c,b+c.故选:A.【点评】本题考查了添括号,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号.14.(2015秋•包河区期中)下列各式去括号正确的是()A.a2﹣(2a﹣b+c)=a2﹣2a﹣b+c B.﹣(x﹣y)+(xy﹣1)=﹣x﹣y+xy﹣1C.a﹣(3b﹣2c)=a﹣3b﹣2c D.9y2﹣[x﹣(5z+4)]=9y2﹣x+5z+4【考点】去括号与添括号.【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、a2﹣(2a﹣b+c)=a2﹣2a+b﹣c,故错误;B、﹣(x﹣y)+(xy﹣1)=﹣x+y+xy﹣1,故错误;C、a﹣(3b﹣2c)=a﹣3b+2c,故错误;只有D符合运算方法,正确.故选D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.15.(2015秋•无棣县期中)下列各组代数式中,互为相反数的有()①a﹣b与﹣a﹣b;②a+b与﹣a﹣b;③a+1与1﹣a;④﹣a+b与a﹣b.A.①②④ B.②④ C.①③ D.③④【考点】去括号与添括号;相反数.【分析】只有符号不同的两个数互为相反数,互为相反数的两个数的和是0.两个多项式,如果一个多项式的各项分别与另一个多项式的各项互为相反数,则这两个代数式也互为相反数.【解答】解:②a+b与﹣a﹣b互为相反数;④﹣a+b与a﹣b互为相反数.故选B.【点评】本题主要考查两个代数式互为相反数的条件:一个多项式的各项分别与另一个多项式的各项互为相反数,则这两个代数式也互为相反数.16.(2015秋•北京校级期中)下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.A.1个 B.2个 C.3个 D.4个【考点】去括号与添括号.【分析】根据去括号的方法逐一化简即可.【解答】解:根据去括号的法则:①应为a﹣(b﹣c)=a﹣b+c,错误;②应为(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,错误;③应为﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,错误;④﹣3(x﹣y)+(a﹣b)=﹣3x+3y+a﹣b,错误.故选D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.17.(2015秋•北京校级期中)下列式子中去括号错误的是()A.5x﹣(x﹣2y+5z)=5x﹣x+2y﹣5zB.2a2+(﹣3a﹣b)﹣(3c﹣2d)=2a2﹣3a﹣b﹣3c+2dC.3x2﹣3(x+6)=3x2﹣3x﹣6D.﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2【考点】去括号与添括号.【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【解答】解:A、5x﹣(x﹣2y+5z)=5x﹣x+2y﹣5z,故本选项不符合题意;B、2a2+(﹣3a﹣b)﹣(3c﹣2d)=2a2﹣3a﹣b﹣3c+2d,故本选项不符合题意;C、3x2﹣3(x+6)=3x2﹣3x﹣18,故本选项符合题意;D、﹣(x﹣2y)﹣(﹣x2+y2)=﹣x+2y+x2﹣y2,故本选项不符合题意.故选C.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.18.(2015秋•北京校级期中)下列去(添)括号正确做法的有()A.x﹣(y﹣x)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+2y﹣2z=x﹣2(y﹣z) D.﹣a+c+d+b=﹣(a﹣b)+(c+d)【考点】去括号与添括号.【分析】分别利用去括号以及添括号法则判断得出答案.【解答】解:A、x﹣(y﹣x)=x﹣y+x=2x﹣y,故此选项错误;B、﹣(x﹣y+z)=﹣x+y﹣z,故此选项错误;C、x+2y﹣2z=x﹣2(﹣y﹣z),故此选项错误;D、﹣a+c+d+b=﹣(a﹣b)+(c+d),正确.故选:D.【点评】此题主要考查了去括号以及添括号法则,正确掌握运算法则是解题关键.二.解答题(共12小题)19.化简:(1)3(x﹣0.5)(2)(3)(4).【考点】去括号与添括号.【分析】根据去括号的法则去括号时,不要漏乘括号里的每一项.【解答】解:(1)原式=3x﹣1.5;(2)原式=﹣3﹣x;(3)原式=﹣a+b;(4)原式=a﹣2a+4b=﹣a+4b.【点评】本题考查了去括号.去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.20.化简下列各数的符号:(1)﹣(﹣);(2)﹣(+);(3)+(+3);(4)﹣[﹣(+9)].【考点】去括号与添括号.【分析】去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.【解答】解:(1)﹣(﹣)=;(2)﹣(+)=﹣;(3)+(+3)=3;(4)﹣[﹣(+9)]=﹣(﹣9)=9.【点评】本题考查去括号的知识,属于基础题,注意掌握去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.21.先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2﹣(a+b)﹣(a+b)2+(﹣3)2(a+b).【考点】去括号与添括号;合并同类项.【分析】根据去括号的方法,先去大括号,再去中括号,最后去小括号,再计算即可.【解答】解:(1)原式=3x2+4﹣5x3﹣x3+3﹣3x2=﹣6x3+7;(2)原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=x2﹣3xy+2y2;(3)原式=2x﹣2x﹣6y+3x﹣6y=3x﹣12y;(4)原式=﹣(a+b)﹣(a+b)2+9(a+b)=﹣(a+b)2+(a+b).【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.22.去括号,合并同类项:﹣(a﹣b)+(4a﹣3b﹣c)﹣(5a+3b﹣c).【考点】去括号与添括号;合并同类项.【分析】原式去括号合并即可得到结果.【解答】解:原式=﹣a+b+4a﹣3b﹣c﹣5a﹣3b+c=﹣2a﹣5b.【点评】此题考查了去括号与添括号,以及合并同类项,熟练掌握法则是解本题的关键.23.先去括号,再合并同类项:﹣2n﹣(3n﹣1);a﹣(5a﹣3b)+(2b﹣a);﹣3(2a﹣5)+6a;1﹣(2a﹣1)﹣(3a+3);3(﹣ab+2a)﹣(3a﹣b);14(abc﹣2a)+3(6a﹣2abc).【考点】去括号与添括号;合并同类项.【分析】先去括号,再合并同类项即可.【解答】解:﹣2n﹣(3n﹣1)=﹣2n﹣3n+1=﹣5n+1;a﹣(5a﹣3b)+(2b﹣a)=a﹣5a+3b+2b﹣a=﹣5a+5b;﹣3(2a﹣5)+6a=﹣6a+15+6a=15;1﹣(2a﹣1)﹣(3a+3)=1﹣2a+1﹣3a﹣3=﹣5a﹣1;3(﹣ab+2a)﹣(3a﹣b)=﹣3ab+6a﹣3a+b=﹣3ab+3a+b;14(abc﹣2a)+3(6a﹣2abc)=14abc﹣28a+18a﹣6abc=8abc﹣10a.【点评】本题考查了去括号和添括号,解答本题的关键是掌握去括号的法则和合并同类项的法则.24.将下列各式去括号,并合并同类项.(1)(7y﹣2x)﹣(7x﹣4y)(2)(﹣b+3a)﹣(a﹣b)(3)(2x﹣5y)﹣(3x﹣5y+1)(4)2(2﹣7x)﹣3(6x+5)(5)(﹣8x2+6x)﹣5(x2﹣x+)(6)(3a2+2a﹣1)﹣2(a2﹣3a﹣5)【考点】去括号与添括号;合并同类项.【分析】原式各项去括号合并即可得到结果.【解答】解:(1)原式=7y﹣2x﹣7x+4y=11y﹣9x;(2)原式=﹣b+3a﹣a+b=2a;(3)原式=2x﹣5y﹣3x+5y﹣1=﹣x﹣1;(4)原式=4﹣14x﹣18x﹣15=﹣32x﹣11;(5)原式=﹣8x2+6x﹣5x2+4x﹣1=﹣13x2+10x﹣1;(6)原式=3a2+2a﹣1﹣2a2+6a+10=a2+8a+9.【点评】此题考查了去括号与添括号,以及合并同类项,熟练掌握运算法则是解本题的关键.25.去括号:﹣(2m﹣3);n﹣3(4﹣2m);16a﹣8(3b+4c);﹣(x+y)+(p+q);﹣8(3a﹣2ab+4);4(rn+p)﹣7(n﹣2q).【考点】去括号与添括号.【分析】按照去括号的法则求解即可,要注意括号前面的符号,以选用合适的法则.【解答】解:﹣(2m﹣3)=﹣2m+3;n﹣3(4﹣2m)=n﹣12+6m;16a﹣8(3b+4c)=16a﹣24b﹣32c;﹣(x+y)+(p+q)=﹣x﹣y+p+q;﹣8(3a﹣2ab+4)=﹣24a+16ab﹣32;4(rn+p)﹣7(n﹣2q)=4rn+4p﹣7n+14q.【点评】本题考查了去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.26.先去括号,再合并同类项:6a2﹣2ab﹣2(3a2﹣ab);2(2a﹣b)﹣[4b﹣(﹣2a+b)];9a3﹣[﹣6a2+2(a3﹣a2)];2t﹣[t﹣(t2﹣t﹣3)﹣2]+(2t2﹣3t+1).【考点】去括号与添括号;合并同类项.【分析】先去小括号,再去中括号,然后合并同类项即可;【解答】解:6a2﹣2ab﹣2(3a2﹣ab)=6a2﹣2ab﹣6a2+ab=﹣ab;2(2a﹣b)﹣[4b﹣(﹣2a+b)]=4a﹣2b﹣4b﹣2a+b=2a﹣5b;9a3﹣[﹣6a2+2(a3﹣a2)]=9a3+6a2﹣2a3+a2=7a3+a2;2t﹣[t﹣(t2﹣t﹣3)﹣2]+(2t2﹣3t+1)=2t﹣t+t2﹣t﹣3+2+2t2﹣3t+1=3t2﹣3t.【点评】本题考查了去括号及合并同类项的知识,熟记去括号及合并同类项的法则是解题关键.27.先去括号,再合并同类项:(1)(x+y﹣z)+(x﹣y+z)﹣(x﹣y﹣z);(2)3(2x2﹣y2)﹣2(3y2﹣2x2).【考点】去括号与添括号;合并同类项.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机器人视频模板课程设计
- 地铁建设沟槽开挖施工方案
- 机动玩具设计课程设计
- 机关目标实施管理方案
- 天津市静海区第四中学2019-2020学年高一11月份四校联考化学试题
- 本地振荡器课程设计
- 木船的施工方案
- 木模板工程施工方案
- 2024年高效塔器内件项目可行性研究报告
- 2024年混旋磷霉素钙项目可行性研究报告
- 国标导地线型号
- 外科休克教案课程
- 公务员申论答题标准格子纸版A4打印版
- 第六章休闲体育产业PPT课件
- SL/T212-2020 水工预应力锚固技术规范_(高清-有效)
- 行政法对宪法实施的作用探讨
- 檩条规格选用表
- 群青生产工艺过程
- 重拾作文ppt课件
- (整理)直流DF0241-JC-DL用户手册
- B2B第三方电子商务平台——基于环球资源网模式分析
评论
0/150
提交评论