第五章-二次型习题_第1页
第五章-二次型习题_第2页
第五章-二次型习题_第3页
第五章-二次型习题_第4页
第五章-二次型习题_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高等代数习题注意:红色的习题不做,计算题第五章二次型1.二次型为正定二次型的充分必要条件是(A)(B)(C)(D)2.,则下列结论正确的是【】(A)A是正定矩阵(B)A是负定矩阵(C)A是半正定矩阵(D)A不是正定矩阵3.,则二次型()【】(A)(B)(C)(D)5.二次型的规范型是(A);(B);(C);(D);6.为一个正定的实二次型,矩阵,则【】(A)A是正定矩阵(B)A是可逆矩阵(C)A不是可逆矩阵(D)以上结论都不对7.n阶实对称矩阵A与n阶实对称矩阵B合同的充分必要条件是【】(A)(B)A,B的正惯性指数相等(C)A,B为正定矩阵(D),且A,B的正惯性指数相等8.以下各式中,()是二次型.【】9.已知实二次型经过,可化为化成标准则a=【】(A)(B)2(C)0(D)310.二次型的规范型是【】11.设,以为矩阵的二次型分别为【】(A),(B),(C),(D),12.已知是阶实对称矩阵,则二次型为正定的充要条件是【】13.,则二次型的规范性是【】14.若二次型的规范型=【】;;;15.下列结论正确的是【】(A)是正定二次型;(B)是负定矩阵(C)是正定矩阵(D)16.二次型经非退化线性变换化成标准型()【】(A)(B)(C)(D)17.,则二次型的秩=【】(A)2(B)3(C)0(D)118.已知矩阵,,则下列结论正确的是【】(A)是负定二次型;(B)是负定二次型(C)存在使得=0;(D)是正定二次型19.是对称矩阵,,则有【】20.,则存在可逆矩阵C,C=(),使得=()【】(A)(B)(C)(D)21.二次型为【】(A)正定的;(B)半正定的;(C)负定的;(D)不定的。22.设矩阵A=,可逆矩阵,使为对角形矩阵,则T=(),=()23.设A=,B=,,则与矩阵()合同【】(A)(B)(C)(D)第二题:填空题1.已知正负惯性指数均为1的二次型通过合同变换化为,其中,则()2.二次型的矩阵是()3.二次型的秩()4.二次型的规范型是5.已知实二次型经非退化变换可化成标准型,则满足()6.已知与合同,则()7.是n阶正定矩阵,则满足()8.二次型的规范型()9.设,与为矩阵二的次型的规范型()11.实二次型的标准型()第三题:计算题1.求非退化线性变换,化实二次型为标准型,并判断它是否为正定二次型.2.基础)设,(1)为何值时,是正定矩阵?(2)为何值时,存在可逆矩阵,使得.3.(本题10分,中)已知二次型,通过非退化线性变换化为标准形,求常数及所用的非退化线性变换.4、(本题10分,基础)用非退化线性变换,化实二次型为标准型并写出非退化线性变换,判断该二次型是否为正定二次型.5、(本题10分,基础)已知二次型的秩为2,(1)求a的值(2)求非退化线形变换,把化成标准形(3)求方程的解.6、(本题10分,基础)求非退化线性变换,化实二次型为标准型,并判断它是否为正定二次型.7、(本题10分,基础)用非退化线性替换化下列二次型为标准型,把上述二次型进一步化为规范型,分实系数、复系数两种情形;并写出所作的非退化线性替换。8、(本题10分,基础)已知二次型的秩为2,求:参数c和二次型的标准型,并判断其类型。9、(本题10分,基础)把二次型化为标准型,并写出相应的变换,并判断其类型。10、(本题10分,基础)二次型的正、负惯性指数都是1,求a。四、证明题1、(本题10分,基础)设A,B都是实矩阵,且秩r(A+B)=n,证明:是正定矩阵。2、(本题10分,中)为正定矩阵,其中A为m阶矩阵,D为n阶矩阵,B为阶矩阵,证明:A,D与都是正定矩阵。3、(本题10分,难)设为正定矩阵,其中A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论