湖南长沙青竹湖重点中学2023-2024学年中考数学五模试卷含解析_第1页
湖南长沙青竹湖重点中学2023-2024学年中考数学五模试卷含解析_第2页
湖南长沙青竹湖重点中学2023-2024学年中考数学五模试卷含解析_第3页
湖南长沙青竹湖重点中学2023-2024学年中考数学五模试卷含解析_第4页
湖南长沙青竹湖重点中学2023-2024学年中考数学五模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南长沙青竹湖重点中学2023-2024学年中考数学五模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是()A.最大值2, B.最小值2 C.最大值2 D.最小值22.将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A.向下平移3个单位 B.向上平移3个单位C.向左平移4个单位 D.向右平移4个单位3.若一次函数y=(2m﹣3)x﹣1+m的图象不经过第三象限,则m的取值范图是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤4.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=15.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE6.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B的坐标为(0,1),OD=2,则这种变化可以是()A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度7.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+318.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A. B. C. D.9.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是()A.10 B.12 C.20 D.2410.如图中任意画一个点,落在黑色区域的概率是()A. B. C.π D.50二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l1分别通过A、B、C三点,且l1∥l2∥l1.若l1与l2的距离为5,l2与l1的距离为7,则Rt△ABC的面积为___________12.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E为线段AB的中点,D点是射线AC上的一个动点,将△ADE沿线段DE翻折,得到△A′DE,当A′D⊥AB时,则线段AD的长为_____.13.关于x的方程ax=x+2(a1)的解是________.14.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.15.抛物线向右平移1个单位,再向下平移2个单位所得抛物线是__________.16.如图,宽为的长方形图案由8个相同的小长方形拼成,若小长方形的边长为整数,则的值为__________.三、解答题(共8题,共72分)17.(8分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)连接AC、BC,判断△ABC的形状,并证明;(3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.18.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.19.(8分)已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.20.(8分)如图1所示是一辆直臂高空升降车正在进行外墙装饰作业.图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为2m.当起重臂AC长度为8m,张角∠HAC为118°时,求操作平台C离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)21.(8分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.求点B的坐标;若△ABC的面积为4,求的解析式.22.(10分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.23.(12分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示):;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.24.在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1,使点P(m,n)移到P(m+6,n+1)处.(1)画出△A1B1C1(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;(3)在(2)的条件下求BC扫过的面积.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】设抛物线与x轴的两交点间的横坐标分别为:x1,x2,

由韦达定理得:x1+x2=m-3,x1•x2=-m,则两交点间的距离d=|x1-x2|==,∴m=1时,dmin=2.故选D.2、A【解析】将抛物线平移,使平移后所得抛物线经过原点,若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,故选A.3、B【解析】

根据一次函数的性质,根据不等式组即可解决问题;【详解】∵一次函数y=(2m-3)x-1+m的图象不经过第三象限,∴,解得1≤m<.故选:B.【点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.4、A【解析】

根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.5、A【解析】

由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【详解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6、C【解析】

Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可【详解】∵Rt△ABC经过变化得到Rt△EDO,点B的坐标为(0,1),OD=2,∴DO=BC=2,CO=3,∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;故选:C.【点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化7、C【解析】

本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.8、A【解析】

根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A.【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.9、B【解析】

根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【详解】解:根据图象可知点P在BC上运动时,此时BP不断增大,

由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,

由于M是曲线部分的最低点,

∴此时BP最小,即BP⊥AC,BP=4,

∴由勾股定理可知:PC=3,

由于图象的曲线部分是轴对称图形,

∴PA=3,

∴AC=6,

∴△ABC的面积为:×4×6=12.故选:B.【点睛】本题考查动点问题的函数图象,解题关键是注意结合图象求出BC与AC的长度,本题属于中等题型.10、B【解析】

抓住黑白面积相等,根据概率公式可求出概率.【详解】因为,黑白区域面积相等,所以,点落在黑色区域的概率是.故选B【点睛】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.二、填空题(本大题共6个小题,每小题3分,共18分)11、17【解析】过点B作EF⊥l2,交l1于E,交l1于F,如图,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=AB⋅BC=AB2=17.故答案是17.点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解.12、或.【解析】

①延长A'D交AB于H,则A'H⊥AB,然后根据勾股定理算出AB,推断出△ADH∽△ABC,即可解答此题②同①的解题思路一样【详解】解:分两种情况:①如图1所示:设AD=x,延长A'D交AB于H,则A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中点,∴AE=AB=,∴HE=AE﹣AH=﹣x,由折叠的性质得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如图2所示:设AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;综上所述,AD的长为或.故答案为或.【点睛】此题考查了勾股定理,三角形相似,关键在于做辅助线13、【解析】分析:依据等式的基本性质依次移项、合并同类项、系数化为1即可得出答案.详解:移项,得:ax﹣x=1,合并同类项,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程两边都除以a﹣1,得:x=.故答案为x=.点睛:本题主要考查解一元一次方程的能力,熟练掌握等式的基本性质及解一元一次方程的基本步骤是解题的关键.14、1.【解析】试题分析:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.15、(或)【解析】

将抛物线化为顶点式,再按照“左加右减,上加下减”的规律平移即可.【详解】解:化为顶点式得:,∴向右平移1个单位,再向下平移2个单位得:,化为一般式得:,故答案为:(或).【点睛】此题不仅考查了对图象平移的理解,同时考查了学生将一般式转化顶点式的能力.16、16【解析】

设小长方形的宽为a,长为b,根据大长方形的性质可得5a=3b,m=a+b=a+=,再根据m的取值范围即可求出a的取值范围,又因为小长方形的边长为整数即可解答.【详解】解:设小长方形的宽为a,长为b,由题意得:5a=3b,所以b=,m=a+b=a+=,因为,所以10<<20,解得:<a<,又因为小长方形的边长为整数,a=4、5、6、7,因为b=,所以5a是3的倍数,即a=6,b==10,m=a+b=16.故答案为:16.【点睛】本题考查整式的列式、取值,解题关键是根据矩形找出小长方形的边长关系.三、解答题(共8题,共72分)17、(1)抛物线解析式为y=﹣x2﹣x+2;(2)△ABC为直角三角形,理由见解析;(3)当P点坐标为(﹣,)时,△PBC周长最小【解析】

(1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;

(2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断△ABC为直角三角形;

(3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则△PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标.【详解】(1)抛物线的解析式为y=a(x+4)(x﹣1),即y=ax2+3ax﹣4a,∴﹣4a=2,解得a=﹣,∴抛物线解析式为y=﹣x2﹣x+2;(2)△ABC为直角三角形.理由如下:当x=0时,y=﹣x2﹣x+2=2,则C(0,2),∵A(﹣4,0),B(1,0),∴AC2=42+22,BC2=12+22,AB2=52=25,∴AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°;(3)抛物线的对称轴为直线x=﹣,连接AC交直线x=﹣于P点,如图,∵PA=PB,∴PB+PC=PA+PC=AC,∴此时PB+PC的值最小,△PBC周长最小,设直线AC的解析式为y=kx+m,把A(﹣4,0),C(0,2)代入得,解得,∴直线AC的解析式为y=x+2,当x=﹣时,y=x+2=,则P(﹣,)∴当P点坐标为(﹣,)时,△PBC周长最小.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.也考查了待定系数法求二次函数解析式和最短路径问题.18、见解析【解析】

由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,∴△AEO≌△CFO(ASA),∴OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.19、见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.试题解析:∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.20、5.8【解析】

过点作于点,过点作于点,易得四边形为矩形,则,再计算出,在中,利用正弦可计算出CF的长度,然后计算CF+EF即可.【详解】解:如图,过点作于点,过点作于点,.又,.∴四边形为矩形.在中,,..答:操作平台离地面的高度约为.【点睛】本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算.21、(1)(0,3);(2).【解析】

(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;(2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为,把A(2,0),C(0,-1)代入即可得到的解析式.【详解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴点B的坐标是(0,3).(2)∵=BC•OA,∴BC×2=4,∴BC=4,∴C(0,-1).设的解析式为,把A(2,0),C(0,-1)代入得:,∴,∴的解析式为是.考点:一次函数的性质.22、(1);(2).【解析】

(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【详解】(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=,(2)列表得:小明小亮ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=.【点睛】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.23、(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】

(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论