福建省福州市闽侯县英才中学2022-2023学年高一数学文知识点试题含解析_第1页
福建省福州市闽侯县英才中学2022-2023学年高一数学文知识点试题含解析_第2页
福建省福州市闽侯县英才中学2022-2023学年高一数学文知识点试题含解析_第3页
福建省福州市闽侯县英才中学2022-2023学年高一数学文知识点试题含解析_第4页
福建省福州市闽侯县英才中学2022-2023学年高一数学文知识点试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省福州市闽侯县英才中学2022-2023学年高一数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数y=的图象交点的横坐标,则方程x2+3x﹣1=0的实根x0所在的范围是(

)A.0<x0< B.<x0< C.<x0< D.<x0<1参考答案:B【考点】函数零点的判定定理.【专题】计算题;构造法;函数的性质及应用.【分析】先构造函数F(x)=x+3﹣,再根据F()?F()<0得出函数零点的范围.【解答】解:根据题意,构造函数F(x)=x+3﹣,当∈(0,+∞)时,函数F(x)单调递增,且F()=+3﹣4=﹣<0,F()=+3﹣3=>0,因此,F()?F()<0,所以,x0∈(,),故选:B.【点评】本题主要考查了函数零点的判定定理,涉及到函数的单调性,属于基础题.2.在直角坐标系中,设,沿轴把坐标平面折成的二面角后,的长是

A.

B. 6 C. D.

参考答案:A3.不等式表示区域的面积为:(

)A.

1 B.

C.

D.参考答案:D略4.若,则=(

)A.

B.

C.

D.参考答案:D5.在平面直角坐标系中,记d为点到直线的距离,当变化时,d的最大值为(

)A.1B.2C.3D.4参考答案:D6.已知函数f(x)=(a﹣1)x2+2ax+3为偶函数,那么f(x)在(﹣5,﹣2)上是()A.单调递增函数 B.单调递减函数 C.先减后增函数 D.先增后减函数参考答案:A【考点】函数奇偶性的性质.

【专题】函数思想;数形结合法;函数的性质及应用.【分析】根据函数f(x)=(a﹣1)x2+2ax+3为偶函数,可得a=0,分析函数的图象和性质,可得答案【解答】解:∵函数f(x)=(a﹣1)x2+2ax+3为偶函数,∴f(﹣x)=(a﹣1)x2﹣2ax+3=f(x)=(a﹣1)x2+2ax+3,∴a=0,∴f(x)=﹣x2+3,则函数的图象是开口朝下,且以y轴为对称轴的抛物线,∴f(x)在(﹣5,﹣2)上是增函数,故选:A.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.7.函数的定义域是[

]

A.

B.

C.

D.参考答案:A8.2log510+log50.25=(

)A.0 B.1 C.2 D.4参考答案:C【考点】对数的运算性质.【分析】根据对数运算法则可直接得到答案.【解答】解:∵2log510+log50.25=log5100+log50.25=log525=2故选C.【点评】本题主要考查对数的运算法则.9.若集合中只有一个元素,则实数的值为A.

0

B.1

C.0或1

D.参考答案:C略10.将函数y=(sinx+cosx)(sinx﹣cosx)的图象向左平移个单位后,得到函数y=g(x)的图象,则y=g(x)的图象(

)A.关于原点对称 B.关于y轴对称C.关于点(﹣,0)对称 D.关于直线x=对称参考答案:A【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题.【分析】利用平方差公式和二倍角公式对解析式进行化简,根据左加右减求出g(x)的解析式,由正弦函数的对称性进行判断.【解答】解:y=(sinx+cosx)(sinx﹣cosx)=sin2x﹣cos2x=﹣cos2x,则由题意知,g(x)=﹣cos2(x+)=sin2x,即g(x)的图象关于原点对称.故选A.【点评】本题考查了复合三角函数图象的变换,根据平方差公式和二倍角公式对解析式进行化简,由条件和正弦函数的性质进行判断,考查了分析问题和解决问题的能力.二、填空题:本大题共7小题,每小题4分,共28分11.不等式的解集为________.参考答案:【分析】通过分类讨论和两类情况即可得到解集.【详解】①当时,不等式显然成立;②当,不等式等价于,即解得,所以,综上所述,解集为:.【点睛】本题主要考查绝对值不等式的求解,意在考查学生的分类讨论能力及计算能力,难度不大.12.已知y=f(x)+x2是奇函数,且f(﹣1)=2,若g(x)=f(x)+2,则g(1)=

.参考答案:﹣2【考点】函数奇偶性的性质.【分析】由题意,可先由函数是奇函数求出f(1)=﹣4,再将其代入g(1)求值即可得到答案.【解答】解:由题意,y=f(x)+x2是奇函数,且f(﹣1)=2,所以f(1)+1+f(﹣1)+(﹣1)2=0解得f(1)=﹣4,所以g(1)=f(1)+2=﹣4+2=﹣2,故答案为:﹣213.将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第10个号码为____________.参考答案:019514.在平面直角坐标系内,设、为不同的两点,直线的方程为,设.有下列四个说法:①存在实数,使点在直线上;②若,则过、两点的直线与直线平行;③若,则直线经过线段的中点;④若,则点、在直线的同侧,且直线与线段的延长线相交.上述说法中,所有正确说法的序号是

参考答案:②③④

略15.在△ABC中,已知,,则b=_________.参考答案:10略16.若二次函数的图象和直线y=x无交点,现有下列结论:

①方程一定没有实数根;

②若a>0,则不等式对一切实数x都成立;

③若a<0,则必存存在实数x0,使;

④若,则不等式对一切实数都成立;

⑤函数的图像与直线也一定没有交点。

其中正确的结论是

(写出所有正确结论的编号).参考答案:①②④⑤因为函数的图像与直线没有交点,所以或恒成立.①因为或恒成立,所以没有实数根;②若,则不等式对一切实数都成立;③若,则不等式对一切实数都成立,所以不存在,使;④若,则,可得,因此不等式对一切实数都成立;⑤易见函数,与f(x)的图像关于轴对称,所以和直线也一定没有交点.17.把6本不同的书平均分给三个人,每人两本,共有

种不同分法。参考答案:54略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=a?4x﹣a?2x+1+1﹣b(a>0)在区间[1,2]上有最大值9和最小值1(1)求a,b的值;(2)若不等式f(x)﹣k?4x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.参考答案:【考点】函数的最值及其几何意义.【分析】(1)令t=2x∈[2,4],依题意知,y=at2﹣2at+1﹣b,t∈[2,4],由即可求得a、b的值.(2)设2x=t,k≤=1﹣+,求出函数1﹣+的大值即可【解答】解:(1)令t=2x∈[2,4],则y=at2﹣2at+1﹣b,t∈[2,4],对称轴t=1,a>0,∴t=2时,ymin=4a﹣4a+1﹣b=1,t=4时,ymax=16a﹣8a+1﹣b=9,解得a=1,b=0,(2)4x﹣2?2x+1﹣k?4x≥0在x∈[﹣1,1]上有解设2x=t,∵x∈[﹣1,1],∴t∈[,2],∵f(2x)﹣k.2x≥0在x∈[﹣1,1]有解,∴t2﹣2t+1﹣kt2≥0在t∈[,2]有解,∴k≤=1﹣+,再令=m,则m∈[,2],∴k≤m2﹣2m+1=(m﹣1)2令h(m)=m2﹣2m+1,∴h(m)max=h(2)=1,∴k≤1,故实数k的取值范围(﹣∞,1].【点评】本题考查函数的单调性质的应用,考查等价转化思想与运算求解能力,属于中档题.19.函数f(x)=x2﹣4x﹣4在区间[t,t+1](t∈R)上的最小值记为g(t).(1)试写出g(x)的函数表达式;(2)求g(t)的最小值.参考答案:解:(1)f(x)=x2﹣4x﹣4=(x﹣2)2﹣8,当t>2时,f(x)在[t,t+1]上是增函数,∴g(t)=f(t)=t2﹣4t﹣4;当t≤2≤t+1,即1≤t≤2时,g(t)=f(2)=﹣8;当t+1<2,即t<1时,f(x)在[t,t+1]上是减函数,∴g(t)=f(t+1)=t2﹣2t﹣7;从而g(t)=;(2)当t<1时,t2﹣2t﹣7>﹣8,当t>2时,t2﹣4t﹣4>﹣8;故g(t)的最小值为﹣8考点:二次函数的性质;函数的最值及其几何意义.专题:计算题;分类讨论;函数的性质及应用.分析:(1)配方法化简f(x)=x2﹣4x﹣4=(x﹣2)2﹣8,从而分类讨论以确定函数的解析式;(2)分类讨论各段上的取值范围,从而求最小值的值.解答:解:(1)f(x)=x2﹣4x﹣4=(x﹣2)2﹣8,当t>2时,f(x)在[t,t+1]上是增函数,∴g(t)=f(t)=t2﹣4t﹣4;当t≤2≤t+1,即1≤t≤2时,g(t)=f(2)=﹣8;当t+1<2,即t<1时,f(x)在[t,t+1]上是减函数,∴g(t)=f(t+1)=t2﹣2t﹣7;从而g(t)=;(2)当t<1时,t2﹣2t﹣7>﹣8,当t>2时,t2﹣4t﹣4>﹣8;故g(t)的最小值为﹣8.点评:本题考查了配方法的应用及分段函数的应用,同时考查了分类讨论的思想应用20.(10分)已知全集,求的值.参考答案:解由得(4分)由得(8分)解得(10分)略21.(12分)写出函数的单调递增区间,并证明。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论