2022届云南省文山市中考适应性考试数学试题含解析_第1页
2022届云南省文山市中考适应性考试数学试题含解析_第2页
2022届云南省文山市中考适应性考试数学试题含解析_第3页
2022届云南省文山市中考适应性考试数学试题含解析_第4页
2022届云南省文山市中考适应性考试数学试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022届云南省文山市中考适应性考试数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差2.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛.其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的(

).A.众数 B.中位数 C.平均数 D.方差3.在△ABC中,∠C=90°,,那么∠B的度数为()A.60° B.45° C.30° D.30°或60°4.若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A.12 B.14 C.15 D.255.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM,则直线PM即为所求(如图2).对于两人的作业,下列说法正确的是()A.甲乙都对 B.甲乙都不对C.甲对,乙不对 D.甲不对,已对6.如图,点ABC在⊙O上,OA∥BC,∠OAC=19°,则∠AOB的大小为()A.19° B.29° C.38° D.52°7.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A. B. C. D.8.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指()A.80 B.被抽取的80名初三学生C.被抽取的80名初三学生的体重 D.该校初三学生的体重9.下列各数中,最小的数是()A.0 B. C. D.10.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将△ABO绕点B逆时针旋转60°后得到△A'BO',若函数y=(x>0)的图象经过点O',则k的值为()A.2 B.4 C.4 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.12.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.13.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.14.如图,点P(3a,a)是反比例函(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.15.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.16.一元二次方程x2=3x的解是:________.三、解答题(共8题,共72分)17.(8分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).18.(8分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.19.(8分)如图,已知二次函数的图象与轴交于,两点在左侧),与轴交于点,顶点为.(1)当时,求四边形的面积;(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点,使,求点的坐标;(3)如图2,将(1)中抛物线沿直线向斜上方向平移个单位时,点为线段上一动点,轴交新抛物线于点,延长至,且,若的外角平分线交点在新抛物线上,求点坐标.20.(8分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?21.(8分)计算:|﹣1|+(﹣1)2018﹣tan60°22.(10分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG=,AH=3,求EM的值.23.(12分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?24.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.求甲、乙两种树苗每棵的价格各是多少元?在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、B【解析】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数3、C【解析】

根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.【详解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.4、C【解析】

先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.5、A【解析】

(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.【详解】证明:(1)如图1,连接OM,OA.∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.∵以点A为圆心、OA为半径画弧、交⊙O于点M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;(1)如图1.∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.故两位同学的作法都正确.故选A.【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.6、C【解析】

由AO∥BC,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°.【详解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故选:C.【点睛】本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.7、B【解析】考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/6="1/"3.故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m"/n.8、C【解析】

总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】样本是被抽取的80名初三学生的体重,

故选C.【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.9、D【解析】

根据实数大小比较法则判断即可.【详解】<0<1<,故选D.【点睛】本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.10、C【解析】

根据题意可以求得点O'的坐标,从而可以求得k的值.【详解】∵点B的坐标为(0,4),

∴OB=4,

作O′C⊥OB于点C,

∵△ABO绕点B逆时针旋转60°后得到△A'BO',

∴O′B=OB=4,

∴O′C=4×sin60°=2,BC=4×cos60°=2,

∴OC=2,

∴点O′的坐标为:(2,2),

∵函数y=(x>0)的图象经过点O',

∴2=,得k=4,

故选C.【点睛】本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答.二、填空题(本大题共6个小题,每小题3分,共18分)11、(4,).【解析】

由于函数y=(x>0常数k>0)的图象经过点A(1,1),把(1,1)代入解析式求出k=1,然后得到AC=1.设B点的横坐标是m,则AC边上的高是(m-1),根据三角形的面积公式得到关于m的方程,从而求出,然后把m的值代入y=,即可求得B的纵坐标,最后就求出了点B的坐标.【详解】∵函数y=(x>0、常数k>0)的图象经过点A(1,1),∴把(1,1)代入解析式得到1=,∴k=1,设B点的横坐标是m,则AC边上的高是(m-1),∵AC=1∴根据三角形的面积公式得到×1•(m-1)=3,∴m=4,把m=4代入y=,∴B的纵坐标是,∴点B的坐标是(4,).故答案为(4,).【点睛】解答本题的关键是根据已知坐标系中点的坐标,可以表示图形中线段的长度.根据三角形的面积公式即可解答.12、【解析】

判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.【详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.故答案为.【点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.13、【解析】

根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是,从而求出第8个正△A8B8C8的面积.【详解】正△A1B1C1的面积是,而△A2B2C2与△A1B1C1相似,并且相似比是1:2,则面积的比是,则正△A2B2C2的面积是×;因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是×()2;依此类推△AnBnCn与△An-1Bn-1Cn-1的面积的比是,第n个三角形的面积是()n-1.所以第8个正△A8B8C8的面积是×()7=.故答案为.【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.14、y=【解析】设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=.∵点P(3a,a)是反比例函y=(k>0)与O的一个交点,∴3a2=k.∴a2==4.∴k=3×4=12,则反比例函数的解析式是:y=.故答案是:y=.点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.15、k>【解析】

由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.【详解】∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,∴△>0,即(2k+1)2-4(k2+1)>0,解得k>,故答案为k>.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.16、x1=0,x2=1【解析】

先移项,然后利用因式分解法求解.【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解三、解答题(共8题,共72分)17、(1)见解析;(2)【解析】试题分析:(1)连接OD,则由已知易证OD∥AC,从而可得∠CAD=∠ODA,结合∠ODA=∠OAD,即可得到∠CAD=∠OAD,从而得到AD平分∠BAC;(2)连接OE、DE,由已知易证△AOE是等边三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,从而可得∠ADE=∠OAD,由此可得DE∥AO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.∵BC是⊙O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴阴影部分的面积=S扇形ODE=.18、(1)详见解析;(2)【解析】

(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=2AE,CE=4AE,然后在Rt△BEC中,即可求得tanC的值.【详解】(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE=,在RT△BEC中,tanC=.19、(1)4;(2),;(3).【解析】

(1)过点D作DE⊥x轴于点E,求出二次函数的顶点D的坐标,然后求出A、B、C的坐标,然后根据即可得出结论;(2)设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,证出,列表比例式,并找出关于t的方程即可得出结论;(3)判断点D在直线上,根据勾股定理求出DH,即可求出平移后的二次函数解析式,设点,,过点作于,于,轴于,根据勾股定理求出AG,联立方程即可求出m、n,从而求出结论.【详解】解:(1)过点D作DE⊥x轴于点E当时,得到,顶点,∴DE=1由,得,;令,得;,,,,OC=3.(2)如图1,设点是第二象限抛物线对称轴左侧上一点,将沿轴翻折得到,点,连接,过点作于,过点作轴于,由翻折得:,;,,轴,,,,由勾股定理得:,,,,,,,解得:(不符合题意,舍去),;,.(3)原抛物线的顶点在直线上,直线交轴于点,如图2,过点作轴于,;由题意,平移后的新抛物线顶点为,解析式为,设点,,则,,,过点作于,于,轴于,,,、分别平分,,,点在抛物线上,,根据题意得:解得:【点睛】此题考查的是二次函数的综合大题,难度较大,掌握二次函数平移规律、二次函数的图象及性质、相似三角形的判定及性质和勾股定理是解决此题的关键.20、(1)y=x1.z=﹣x+30(0≤x≤100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【解析】

(1)利用待定系数法可求出y与x以及z与x之间的函数关系式;(1)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w与x的函数关系式,再利用配方法求出最值即可;(3)首先求出x的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图①可得函数经过点(100,1000),设抛物线的解析式为y=ax1(a≠0),将点(100,1000)代入得:1000=10000a,解得:a=,故y与x之间的关系式为y=x1.图②可得:函数经过点(0,30)、(100,10),设z=kx+b,则,解得:,故z与x之间的关系式为z=﹣x+30(0≤x≤100);(1)W=zx﹣y=﹣x1+30x﹣x1=﹣x1+30x=﹣(x1﹣150x)=﹣(x﹣75)1+1115,∵﹣<0,∴当x=75时,W有最大值1115,∴年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)令y=360,得x1=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=﹣(x﹣75)1+1115的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.21、1【解析】

原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.【详解】|﹣1|+(﹣1)2118﹣tan61°=﹣1+1﹣=1.【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.22、(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得,由此即可解决问题;试题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论