高中数学教学设计案例10篇_第1页
高中数学教学设计案例10篇_第2页
高中数学教学设计案例10篇_第3页
高中数学教学设计案例10篇_第4页
高中数学教学设计案例10篇_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学教学设计案例10篇高中数学教学案例篇一【关键词】案例;案例教学;高职;数学中图分类号:G712文献标识码:A高等职业教育的主要任务是培养高素质的技能型人才。而高职数学是实现这一目标的不可缺少的载体。高职数学在工科高职院校是一门公共基础文化课和基础专业课,他对后续专业课程起着非常重要的作用。高职数学的主要任务:一是学生在原有的文化基础上,进一步学习和掌握本课程的基础知识和基本运算能力、计算工具使用能力、数学逻辑思维能力和实际应用能力;二是要为学生学习专业课程提供必需、够用的“工具”,使他们具有学习专业课程的基础知识和计算能力。由于现在高职生数学基础差、底子薄,内容多,学时少、专业课程的多样性,高职数学如何很好的完成它的教学任务摆在高职数学教师的面前。如何解决这样的矛盾,壁纸觉得高职数学教学选择案例教学是解决此矛盾的一种有效途径。针对不同的专业不同的对象,选择适宜的“案例”作为教学载体,这样既进行了数学的基本教学,培养学生的数学能力,同时也兼顾了为专业课程服务。一、高职数学案例教学的内涵“案例”是案例教学的核心,离开了案例,案例教学就无从谈起。所谓的案例就是为了一定的教学目的,围绕选定的一个或者几个问题,以事实为素材而编写的对某一实际情景的客观描述[1]。数学案例教学就是在学生掌握数学有关基础知识和分析技术基础上,在教师的精心策划和指导下,根据教学目的和教学内容的要求,运用典型案例,将学生带入特定事件的现场进行案例分析。通过学生独立思考或集体协作进一步提高其分析和解决某一问题的能力的教学方式[2]。数学案例一般具有以下特点:(1)真实性,案例一般来源于生活工作实际,给生活和学生学习的专业联系紧密,不是凭空想象捏造出来的;(2)典型性,数学案例是由一个或者几个问题组成,情节详细,是具有代表性的事例;(3)启发性,数学案例是为数学理论的服务的,能够引人深思,启迪思路。高职数学实施“案例教学”可以真正实现师生互动、相互沟通、教学相长,培养学生的分析问题和解决问题的能力,同时也可以达到理论联系实际的目的。使学生感觉到学数学有用且能用。二、高职数学案例教学的必要性和重要性在一般的大学里,高等数学认为是最不好学的学科之首。在高职院这种情况更为突出:首先高职数学的教学很多都是本科高等数学教学的“压缩版”,教学内容多为理论,体系单一,内容深奥,脱离实际,使学生觉得枯燥乏味;其次近些年高职院学生的数学基础越来越差;再次教学内容多,教学时间少,学生对抽象的数学内容难以理解,从而对数学缺乏兴趣,甚至有的学生从心底就放弃了数学的学习。很显然现有的传统的教学已经不能满足现有教学的需要。因此如何使高职数学的教学适应当前的现状,笔者觉得结合专业案例教学是一条较好的途径。1、学习目的更明确。传统的高职数学教学中理论,轻应用,使得学生觉得学习数学没有用处。而案例教学可以把课堂带进一个真实的世界,把对枯燥乏味的数学理论推导转化为丰富多彩、各具特色的案例,使学生觉得数学是我们需要的,并且就在我们身边,同时也让学生感觉到学习数学的目的。2、激发学生的学习兴趣。爱因斯坦曾经说过:“兴趣是求知的前提,兴趣是最好的老师。”案例教学可以很好的激发学生学习的兴趣,选择与学生专业相关的案例,激发学习数学的兴趣,是他们觉得数学的学习是专业的需要,同时通过案一米范文例教学,可以使以往“死气沉沉”的数学课堂有所改善。3、激发学生学习的主动性。传统的数学教学主要是“灌输式”教学,教与学严重脱节,学生的学习主动性和积极性不能很好调动。而高职数学案例教学是老师与学生以及学生之间的互动式的教学。老师作为学习共同体的一员,是主导,发挥导学的作用,引导学生提出问题,分析问题,找到问题的解决方法;在这个过程中,学生会不断发现和提出新问题,质疑对方的假设前提和观点,然后展开争论,不断探讨,最后形成一致意见。整个过程,学生都是亲自参与其中,亲身经历了整个问题的解决过程,能很好的调动学生学习的主动性和积极性。4、培养学生应用数学的能力。数学案例具有鲜活的个性,给理论教学带来了解决实际问题的知识和实践经验。这个让学生亲自参与分析、讨论、解决实际问题深入思考的过程,可以让学生在数学案例的潜移默化中养成分析问题,解决问题的习惯,让学生学会用数学的思想和方法分析解决实际问题,从而培养了学生的创新意识和“用数学”的意识和能力。三、数学案例教学的实施1、课前准备阶段俗话说,不打无准备的仗,高职数学案例教学亦是如此。课前准备是否充分是案例教学是否顺利实施的关键[3]。学生的准备。实施数学案例教学的目的是让学生在掌握了基本知识的基础上,提高分析问题和解决问题的能力。课前需要让学生复习和预习相关的数学知识,为数学案例教学实施提高保障。教师的准备。教师的准备是实施数学案例教学成功的关键。首先,选择的案例要具有真实性,案例要取材于生活、工作实际,不能凭空想象或者杜撰。面对高职生,尽量选择他们易理解、易接受的生动活泼的来源于生活、与所学专业较紧密的案例,以便调动学生学习的积极性。同时要注意对案例深度的把握,太深,学生百思不得其解,容易打消学生学习的积极性,太浅,学生三两下就做完了,不能很好调动学生的积极性,同时也不能起到案例教学的预期效果。其次,数学案例要具有启发性,这样才能培养学生的数学能力。智慧不可教,学生要获得数学能力,需要自己去探索,解决问题的方法,从而获得数学能力。再次,数学案例的选择要适合教育目标的需要,适应学生的数学水平,以便大多数同学都能够参与到案例教学中来。2、课堂实施阶段首先,教师呈现案例。在课堂教师可以借助于现代化教学设备将数学案例呈现在学生的面前,使学生对整个案例有一个整体认识,在这个过程中教师可以给予适当的提示,使学生对案例整体把握较全面。其次,课堂讨论。数学案例教学的成功取决于教师和学生的共同努力,需要教学双方积极地参与和配合[4]。讨论过程中需要充分体现以老师为主导、以学生为主体的教学理念。在讨论中要激发学生的主动性和积极性,由学生作为教学的主体展开讨论,分析问题,讨论问题解决问题。于此同时,老师要发挥引导作用,积极地引导学生,当学生偏离了方向时,及时引回到讨论的主要问题上来。课堂要能在老师的掌控中进行,不要将争论无休止地进行下去或者课堂失控,导致教学失败。当学生针对某一问题解决方案分歧较大时,老师应抓住问题的焦点,深人讨论研究;对讨论时学生认识上的错误要及时进行纠正;对学生正确的看法或者观点要立即加以肯定,让学生领会分析问题的方法,对遗漏的问题适当加以补充。再次,案例评价。教师针对学生案例讨论结果给予肯定,指出讨论中错误的地方及其致错原因,对不完整、不准确的地方给予补充和更正。针对学生在案例教学中的积极表现,要适时地给予表扬和鼓励,达到激发学生学习兴趣的目的。高职数学教学采用案例教学,可以增强学生学习的兴趣,通过对案例的分析和讨论,让学生感觉数学不那么枯燥乏味,数学就在我们身边,数学也是我们专业课程学习和以后工作的需要;可以改变数学课堂上死气沉沉的局面,活跃了课堂气氛;可以提升高职数学专业素质,因为以案例进行数学教学,对教师在备课,讲课,以及对授课学生所学专业的了解程度,都提出了更高的要求。【参考文献】[1]张家军,靳玉乐。论案例教学的本质与特点[J].中国教育期刊,2024(1).[2]程敏。案例教学在高职高等数学课程教学中的应用研究[D].华中师范大学,2024.高中数学教学案例篇二学生是数学教育教学的对象,是数学学习的主体,数学教学应着眼于每一个学生的发展。在高中数学教学中,不仅仅要关注学生的兴趣培养,也要注重引导学生用心参与课堂探究活动,还要以学生的实际为基础,关注其差异性,透过分层教学让不同的学生得到不同的发展,使数学教学变得更加有效。一、关注学生的兴趣培养,提高学生的用心性学生是学习的主体,学生的学习兴趣将直接影响其学习效果,因为学习兴趣是学习的内部动机。新时代的数学教学,不能依然停留在“传道授业解惑”的层面,而要立足于学生的长远发展,以激发学习兴趣为基础,让学生用心主动地参与到数学学习过程中。在激发学生学习兴趣的过程中,教师要充分了解每一个学生的家庭背景、知识基础、学习习惯等因素,还要能结合学生的实际和教学需要思考培养学生兴趣的方法。在教学过程中,教师要多关注学生的非智力因素,优化评价机制,给予学生更多的关心和呵护,这样才能帮忙学生树立数学学习自信,促使学生用心参与教学活动。有的学生在初中阶段数学成绩较差,进入高中后,学习用心性不高。教师要与这些学生进行沟通,了解学生所采用的学习方法,帮忙学生查找原因,然后给予指导。要以和谐的师生关系为基础,与学生平等互动、相互沟通交流,构成伙伴、朋友关系。要给予学生更多的鼓励,多关注他们的优点,使其能取长补短,萌发对数学的学习兴趣。二、注重方法习惯培养,培养学生的学习潜力在数学教学中发现,有的学生并非自己不努力,课堂中也较为用心,在完成练习的过程中也很仔细,可成绩依然不尽人意。究其原因,学生在学习过程中的方式方法不当,从而导致学习事倍功半。每个学生在数学学习过程中的思维方式、学习策略不同,教师要帮忙学生选取最适合自己的方法。在培养学生的数学学习方法和习惯的过程中,一是要注重预习习惯的培养,而这可透过课前目标引导学生完成相应的预习任务。如,在“对数函数”的预习中,什么是对数对数函数的定义是如何的对数函数有什么基本特点对于这些问题,可列出相应的要求,然后引导学生自主阅读教材,并完成课前练习等预习任务。在方法上,要引导学生在理解的基础上进行练习。如,“不等式的解法”常见的方法有哪些,要注重对典型例题的分析,然后进行针对性的训练。三、优化课堂教学设计,引导学生用心参与在以往的高中数学教学中,教师可能更多关注那些优生的参与度,而对后进生的关注却不到位。课堂探究环节是促进学生构建数学知识、发展潜力的关键环节。四、关注学生的个体差异,促进学生不断发展教育教学是为全体学生而服务的,而教学中教师所应对的学生又是千差万别的。因此,不能以相同的标准和要求去对待学生,而要充分思考学生的实际差异,因材施教。尤其是对中下层的学生,要给予他们关心和帮忙,鼓励和支持,让他们在原有基础上不断发展。首先,无论是在预习要求、问题难易程度、练习、评价上,都要思考学生的差异性。如,在练习中,有的学生基础不太好,练习题就应以基础练习为主,题量不宜过大,且要注重在学生练习后进行反馈,帮忙学生透过练习而巩固基础知识。其次,要更多关注学生在学习过程中的表现,不能以成绩为唯一的标准去衡量学生,而要以发展的眼光看待学生,多发现其优点,给予鼓励。如,有的学生虽然成绩一般,但课堂中表现用心,能较好地遵守纪律,就应给予鼓励。总之,新课改下的高中数学教学,提倡让全体学生得到发展。在高中数学教学中,只有立足于每一个学生,以学生的兴趣为激发,以方法习惯培养为重点,改革课堂教学模式,关注学生的差异性,才能让不同的学生得到不同的发展,在促进个体发展的基础上让全体学生得到发展。高中数学教学案例篇三关键词:案例导入小学教学教学案例应用案例导入是小学数学教学创新形式之一,而传统数学教学理念直接制约了小学数学教学效果,且小学数学课程设计也缺乏一定前瞻性,限制了案例教学的效果。随着小学数学教学形式不断创新,案例教学也在不断深化,案例导入需要老师在授课之前严密制定小学数学教学计划,要求老师优化数学教学方案,因此探讨案例导入在小学数学教学中的应用是符合推进新课改进程的重要战略,是完善小学数学教学形式的重要途径。一、案例导入在小学数学教学中的应用现状案例教学已经普遍应用于小学数学教学中,但总体上小学数学案例教学表现出水平低、案例导入有待于进一步提高。另外,受限传统数学教学模式的限制,案例导入需要与数学教学计划形成无缝隙对接,然而现在小学数学案例教学与数学大纲内容对接准确性有待于进一步提高。尤其是新课改背景下小学数学教学内容要符合时展,生活发展以及社会发展的需求,然而当前小学数学案例教学虽然迎合了新课改的战略要求,但需要进一步加强案例教学的有效性,案例导入的有效性也是提高小学数学教学质量和效果的重要因素。小学数学案例培养了小学生自主思考,进行学以致用的教学理念,转变了传统灌输以老师为主导的纯理论学习,弱化了小学数学实际运用的锻炼。总之,新时期案例导入在小学数学教学中的应用需要进一步完善小学数学教学的各个环节,以提高小学数学教学的有效性和课堂教学质量,达到学以致用的作用。二、小学数学案例教学的重要性分析(一)有利于改善学习氛围小学数学教学本身对于具体问题的探讨与研究,在研究过程中存在着极强的抽象性,对于小学数学纯理论问题缺乏必要灵活性,较多学生对于数学学习缺乏专业兴趣。而案例导入具有较强的灵活性,同时能够提高数学的学习兴趣,案例导入把小学数学知识与案例形式结合起来,有助于发现学习数学的乐趣,能够从心理上抓住学生的好奇心,同时也能够有效地提高学生的学习积极性。(二)有利于优化教学计划教学数学教育要想从跟上进行有效的突破,就需要在教学内容上进行优化,传统的教学形式以及教材内容都过分地要求学生有较强的理解能力。教师在教学过程中对于教材中的问题进行详细的解决,并针对问题进行必要的问题改革,其主要目的是为了能够让学生在案例导入影响下更好学习数学知识,把抽象知识直观的展现在学生面前,让学生对于数学有了更加清楚的认识,优化了教学教材的同时也突破了学生的极限。(三)有利于改进教学手段传统小学数学教学中就是通过教师上课过程中的讲解,对于讲解要想有更清楚的认识,就需要通过信息技术进行直观的展示。传统的教学手段很难进行及时的信息反馈以及评估,案例导入能够进行及时的教学评估,同时也能够更好地创新发展教育,让小学数学教学在案例导入的带领下更好地改进教学手段,让更多的学生认识到学习数学的乐趣,促进传统教学模式的变革,以适应当前数学课程改革的现实需要。三、小学数学案例教学要点分析(一)改变教学模式,营造良好教学环境案例导入应用需要注重转变传统教学模式,运用案例导入教学方式,营造小学数学教学课堂的良好教学环境。案例导入有利于提高课堂教学氛围,案例导入需要教师与学生互动环节的创设,课堂案例导入过程中的讨论与交流环节需要教师创设交流环境,而案例导入是改变数学教学模式的前提和基础,需要教师事先制定缜密的教学计划,防止案例导入偏离教学内容,造成小学数学案例教学有效性的下降。(二)培养学生提问意识,提升学生学习主动性案例导入在小学数学教学中的应另外一个重要环节,是要培养学生具备提问意识,案例导入教学往往会忽视部分基础理论知识,往往以案例导入揭示出基础知识点,部分同学会有不解或有疑惑,这时候需要培养学生提问意识,提升学生学习主动性,但部分学生学习主动性较差可能导致案例导入教学质量下降,所以提升学生学习主动性是其重要环节。因此,案例导入需要学生具体提问意识,也需要学生具备学习主动性。(三)加强基础知识教学,增强学生提问能力首先,运用案例导入教学手段加深学生对基础理论知识的理解。小学数学课堂上诸多学生往往不注意基础知识的学习,更愿意找一些有难度的习题进行攻克,这是一种本末倒置的做法。只有将基础知识理解透彻,才能够深入学习其他有难度的知识。教师要善于与学生互动,运用案例导入教学手段吸引学生对于基础知识的理解与掌握,让学生了解基础知识的重要,并通过基础知识提升提问能力。另外,培养学生举一反三的思维能力。举一反三,是案例导入教学过程中十分重要的环节。举一反三的思维,是需要教师不断引导,最终通过学生自己的理解将问题深化、细化,从而培养出来的一种能力。举一反三,对提高学生问题意识与提问能力有促进作用,因此在小学数学课堂教学中,教师要在基础知识基础上尽可能扩充知识外延,让学生的发散思维得以运用,从而培养学生举一反三的思维能力。四、结论在新课改环境下如何更好地改革小学数学教学,需要教师转变教学角色,发展案例导入教学方式。小学数学案例导入方法和有效策略,其主要目的是为了提高小学数学教学质量。学案教学模式的创建与应用,让教师与学生更好的融合在一起,让自主教育模式逐步占据主导地位,以学生为主体,弱化课堂上教师的角色,提高学生自主学习能力。但如今,小学数学课堂中影响小学数学案例导入教学存在诸多限制性因素,需要教育工作者不断进行深刻反思与探索,以提出真正行之有效的提高案例导入教学的合理化措施,以促进小学生更好地适应数学的学习与生活。参考文献:[1]袁金玉。小学数学采用导入式教学的研究[J].现代交际,2024,(10).高中数学教学案例篇四半个学期了,回顾本学期必修1模块的教学情景,我有以下几点体会。1、高一学生在初中三年普遍已构成了固定的学习方法和学习习惯。相当部分同学满足于课堂上的认真听讲,满足于课后的作业模仿缺乏进取思维;遇到难题不是动脑子思考,而是期望教师讲解整个解题过程;缺乏自学、看书的本事,甚至有少数同学仍有些学生还相信能够经过“考前突击复习”来取得好成绩。而高中教师在授课时强调数学思想和方法,注重举一反三,在严格的论证和推理上下功夫。所以造成初,高中教师教学上的巨大差距,中间又缺乏过渡过程,至使高中新生普遍适应不了高中教师的教学方法。2、高一要放慢进度,降低难度,注意教学资料和方法的衔接。根据我的实践,我认为高一第一章课时数要增加。要加强基本概念、基础知识的教学。教学时注意形象、直观。证明函数单调性时可进行系列训练,开始时可搞模仿性的证明。要增加学生到黑板上演练的次数,从而及时发现问题,解决问题,章节考试难度不能大。经过上述方法,降低教材难度,提高学生的可理解性,增强学生学习信心,让学生逐步适应高中数学的正常教学。3、严格要求,打好基础。开学第一节课,教师就应对学习的五大环节提出具体、可行要求。如:作业的规范化,独立完成,订正错题等等。对学生在学习上存在的弊病,应限期改正。严格要求贵在持之以恒,贯穿在学生学习的全过程,成为学生的习惯。指导学生改善学习方法。好的学习方法和习惯,一方面需教师的指导,另一方面也靠教师的强求。教师应向学生介绍高中数学特点,听课时要动脑、动笔、动口,参与知识的构成过程,而不是只记结论提倡学生进行章节总结,把知识串成线,做到书由厚读薄,又由薄变厚。如果注意到以上几点,教学效果可能会更好一些。高中数学教学案例篇五一、利用案例的趣味特征,有效激发学生的学习潜能案例一:我在讲数学归纳法一节前,首先利用大屏幕给学生展示了几幅多米诺骨牌的视频,同学们很感兴趣,此时我提出了一个问题:“大家研究一下多米诺骨牌能够依次倒下的条件是什么?”同学们展开了讨论,回答的结果在意料之中,我说很好。紧接着将问题转入本节的数学归纳法,我引导学生通过下表的对比,进一步说明数学归纳法的一般原理。同学们兴致很高,课堂气氛活跃,多米诺骨牌效应,不仅形象地表达了数学归纳法的应用原理,而且化深奥为浅显,使学生在理解数学归纳法的应用原理方面受益多多。我趁势给同学们讲解了数学归纳法证明与正整数有关的等式,不等式问题,同学们积极参与,共同完成了这一典型问题的解答。正是我抓住了知识特点和问题特性结合点,创设了有效案例,才有效调动了学生参与学习活动的积极性,实现了学生学习欲望和内在潜能的挖掘,促进了教学活动的深入开展。二、利用案例的概括特征,有效提升学生的创新能力教学实践证明,在每一节数学课教学中,所涉及到的知识点内容较多,同时还与其他知识点有着密切的联系。数学案例作为教师知识教学有效载体,就要能够根据教学内容,以及知识要点等内容,提出具有启发性、诱导性和可讨论性,并能够切中知识点要害和关键点的问题,将知识点内容及内涵关系有效渗透到选取的每一个案例问题中,让学生在学习中初步感知,在探究思考过程中,能够从不同方面进行思考分析,找出进行问题解答的正确方法和有效途径,实现学生思维创新能力的有效提升。案例二:根据三角形的性质,可以推测空间四面体的性质,请用类比推理完成下表:此案例是我在讲解类比推理一节时设计的一个案例,我让学生利用上表进行比较,猜测空间四面体体积与三角形的面积的相似之处。此时学生展开讨论,多数学生能将三角形的内切圆类比为四面体的内接球,然而,在将三角形的周长进行类比时,出现了不同的结论,如有四面体的所有棱长的和,有四面体的侧面积的和,有四面体的表面积,等等。我提示学生,部分同学在由二维向三维类比时,相关量显得不够协调,如三角形的周长即三边长之和,在三维中应类比为四面体的什么量?我们知道如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题就越可靠。虽然由类比所得到的结论未必是正确的,但它所具有的由特殊到一般的认识功能,对于发现新的规律和事实却是十分有用的。通过本节课,让学生初步感受推理的意义和价值,让学生感受到学习数学和研究数学最令人感到困惑也是最引人入胜的环节之一,就是如何发现新的规律和事实与怎样证明规律和事实。这种教学方法,不但能够使学生牢固掌握原本呆板的数学公式,而且能够极大地激发学生的学习兴趣,诱发学生的求知欲,提升学生的数学认知能力。案例教学是通过模拟的具体情景让学生置身其中,凭借案例素材所提供的信息和自身的认知能力,运用自己所掌握的相关理论,以当事人的身份去分析研究,寻找存在的问题和解决问题的方法。因此,在这种方式的学习中,学生没有了任何依靠,只能靠自己动脑筋思考问题,分析问题并独立地做出判断和决策,从而使学生从“要我学”转变为“我要学”。这不但增强了教师与学生之间的互动,提高了课堂教学质量,提高了学生分析问题、解决问题的能力,而且使师生之间、学生之间的信息交流十分频繁,实现了教学相长。总之,新课改,新理念,新要求,广大教师只有树立与时俱进的教育理念,在案例式教学过程中,不断探索,不断实践,紧扣学生这一关键要素,认真探知知识内容,结合学生实际,设置典型案例,开展有效教学,才能实现教学效能的稳步提升和有效教学活动的跨越发展。本文主要探讨了高中数学有效教学。通过本文的研究,得到了一些成果,但是,由于本人的水平有限,以及研究时间等多种因素的限制,难免会存在一些不完美的地方,仍然需要继续深入研究,进一步完善和提高。高中数学教学案例篇六案例模版1、教学设计背景2、教学设计思路2.1设计理念2.2教学重点与难点2.3学法与教学用具3、课堂教学实录3.1新课导入3.2独学、对学、群学3.3课堂展示3.4课堂作业4、教学反思5、教学评析高中数学教学案例篇七【摘要】APOS案例教学法指学生在教师的指导下经过Action(操作或活动阶段)、Process(过程阶段)、Object(对象阶段)、Scheme(模型阶段)四个阶段对问题进行探讨的教学方法。在高等数学教学过程中使用APOS案例教学法,不仅分析了高等数学概念的逻辑结构,又分析了学生在学习过程中的思维过程。这种方法有利于促使学生形成相对稳定的数学概念心理图式,为学生能够运用数学解决实际问题奠定了基础。关键词APOS理论;高等数学教学目前,多数高职院校“以应用为目的,以必需、够用为目的”的原则,采取压缩公共基础课课时、增大专业课实习实训的措施。在这种情况下,多数高职教师在高数课堂上弱化基本概念的教学、偏面强调数学的应用,把高等数学的教学变成了讲例题、做练习题、答考题的应试教学模式。基本概念的教学是高等数学教学的根本,是提炼数学思想方法,培养学生创新精神的平台。笔者认为教师采用APOS案例教学法讲授数学概念,能够很好地解决了高职数学教师所面临的问题,提高学生运用数学的能力。一、APOS理论概述APOS理论是个体学习数学的学习理论,该理论阐述了:个体认知数学概念的过程对于数学学习有指导性的作用。活动、过程、对象和图式是个体对数学概念的认知的四个阶段,具体涵义如下:“活动”(action)是个体对数学“对象”进行变形,这种变形在外部刺激的条件下,通过学习动作指示来获得,这种获得有时显而易见,有时来自记忆。当重复并反省“活动”时,个体能够形成内部构造,此时“活动”就内化为“过程”(process),具体表现为个体能够从逆向推到数学概念,同时构造更复杂的“活动”。个体将“过程”(process)看作整体,同时可以对概念进行变形,这时“过程”就凝聚成“对象”(object),进而个体头脑中形成一个协调的网络,即数学概念的“图式”(skema)。这个协调的网络在某种意义上能明确地或隐含地决定哪些现象是“图式”的范围。二、APOS案例教学法APOS理论对学生的概念理解作出了分层分析的基础上,可以预测学生对概念作出的心理建构。笔者在APOS理论的指导下,对案例教学法进行了完善。1.概念引入在教学中,针对不同的数学概念以实际生活或专业应用为背景引入概念,让学生亲身体验、感受概念的直观背景,并通过组织整理、分析归纳接触到的实例来直观地帮助学生形成定义,在引入概念时要充分考虑学生的认知规律,引例要遵循直观性、可接受性原则。因此,引例的选取非常重要。在高等数学教学中要有些经典引例,例如“一尺之锤,日取其半,万世不竭”、刘徽的“割圆术”、变速指点的瞬时速度、曲线的切线斜率、曲边梯形的面积、变速质点的位移。引例分析能使学生亲身体验数学概念的背景,引导其对背景分析归纳,抽象共性,直观地帮助学生形成定义,实现从具体到抽象,为概念表述做准备。总之,“活动”阶段,有利于激发学生的学习兴趣和强烈的求知欲及创造力,还有利于激发学生去构建新理论的信心和内在驱动力。2.概括表述概念、方法的概括,是一种逻辑方法,即用已知数学知识、方法明确另一个概念、方法内涵。在教学中要贯彻发现法的教学原则,充分发挥学生的主题能动性,为学生营造一个再造心智活动过程。美国微积分教学的“四原则”为概念、方法的表述提供了借鉴,即在数学对象阐明过程中要尽量使用图像、数值、符号和语言。用多元表征方式展现概念、方法,不仅符合学生个体认知规律,又有利于其理解。比如在对极限概念的表述过程中不仅要用自然的定性描述语言,也要用数学语言描述,同时还要用数学符号进行描述,最好再用数值化列表作图逼近的方法,具体形象地体现自变量趋于一个值时,函数值逼近某一具体值得趋近过程。培养学生用标准数学语言来表述概念,对概念表述时特别注重精确性。3.分析解剖当概念进入对象状态时,便呈现出一种静态结构关系,有利于从整体把握其性质。“对象”状态是通过前面的活动和抽象,个体认识了概念的本质,并赋予概念定义和符号,令其达到精致,从而成为一个具体的对象,在以后的学习中用此具体对象开展新的活动。在此过程中,对象转变为即将被操作的“实体”。所以,在教学实践中要特别注重对数学概念表达形式中的精炼语言和所使用的符号的涵义分析解剖。分析概念所适用的条件和范围时,要从多角度和多方位来考虑。在教学中对数学概念的含义作更深入的分析解剖,具体表现在对其内涵、外延的进一步说明,比如与其他概念的联系与比较等,努力揭示抽象概念的“本原”意义,阐明隐藏在形式符号后的数学思想方法。一个完整的数学概念真正成型,必须要正确把握概念的内涵和外延。在高等数学教学过程中,教师要有意识地引导学生发现数学思维过程中概念的矛盾运动和发展变化,揭示出数学概念之间的关系。数学教师就是帮助学生发现隐藏在“冰冷的形式”背后的“火热的思考”。例如讲解多元函数微积分时要把该知识与一元函数微积分相应的概念进行归纳比较,突显出其内在关联与区别。事实上,在整个高等数学的学习过程中贯穿对数学概念的分析解剖,能够促使个体对数学概念的强化补充,建立内在统一的概念网络,同时有利于学生形成并发展主题的数学思维能力。4.形成稳定的心理图式此时的数学概念已经在头脑中形成总和心理图式,该图式含有具体实例、抽象过程、完整定义乃至和其他概念的区别与联系。教学中要在概念的应用中加深对所学概念的理解和把握,从而形成数学意识以及分析解决实际问题的能力。要努力揭示概念的客观背景和在解决实际问题中的意义,尽可能给出几何解释、物理解释和其他联系实际意义的解释。既要阐释概念的实际应用又要阐释数学应用,举一些和实际生活相关的例子,也要把所讲概念运用于解决数学问题。经过长期的学习活动,“模型”阶段才能不断完善。在学习过程中教师应该深刻地揭示数学概念的矛盾运动和辩证发展,长期反复,循序渐进,螺旋上升直至建立和形成较稳定的数学概念心理图式,个体在心理图式形成的过程中逐渐具备运用数学解决实际问题的能力。高中数学教学案例篇八当前高一数学教学方面存在着一些认识上的误区,主要表现在学生的学习态度和方法上没有摆脱初中阶段对数学学习的认识,学生普遍学习兴趣不高。由此提出了几点看法和做法。作为一名数学教师,在高一年级的一年教学过程中,通过不断的学习和钻研教育教学方法,以及与广大同学的接触交流,了解到许多学生甚至教师在教学中存在不少认识上的误区,主要有以下几项体会。第一、高一年级的学习阶段标志着学生学习进入了一个新的时期,在学习的方法上,学习的认识上,学习的深度上与初中阶段的数学学习完全不同,但是从学生的角度讲,普遍学习兴趣不高。学生自认为初中数学成绩不错,没有必要投入更多的精力也可以轻松地完成数学课程学习,上课也好,作业也好,时常不认真对待,马虎应付,主动性差。真实的情况是,高中数学学习不仅仅是把初中知识再加热,而是从一个更新的角度的学习,把仅仅停留在模仿阶段的学生的知识,从理解联系的角度更新诠释,进而训练学生的逻辑思维,进行探究性的学习,使学生脱离机械记忆的层面,开始学会在逻辑思考的前提下用联系的观点来看问题。第二、对学生来讲,初中的数学学习的机械记忆方法,存在着学习的惯性,依然影响了学生的学习方法。到了高一阶段,大部分学生的学习习惯,仍然停留在单纯的机械记忆的层次上,难以适应高中的数学学习,很多学生对我讲,平时花费了相当多的时间背,记数学知识,可考试成绩还是不见长进,不知道为什么?显得很苦恼,学习的兴致一天天被消磨掉了。因此,我深刻体会到,高中数学教师除了把数学知识传授给学生以外,更加重要的责任是逐渐诱导改变学生的学习习惯,使其自觉或不自觉走到高中数学教学所要求的轨道上来。通过教学实践,我个人认为:第一、高一数学教学以培养学生的学习兴趣、逻辑思维能力和情感态度为教学目标,为高二时期的学习打下良好基础。第二、拓展课堂教学内容,增加课外知识加强相关的知识模块教学。高中数学教学案例篇九高中数学教学案例:指数函数的图像与性质提出问题:新课程认为知识不是单方面通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(教师指导和同学的帮助)协作,主动建构而获得的。它强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。通过多年教学实践和对新课程的认识,我认为若遵循这个原则进行数学课堂教学,学生的学习将是一种高效的活动。教材中的地位:本节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。是在初中已经初步探讨了正比例函数,反比例函数,一次函数,二次函数的图像和性质的基础上,在进一步学习了函数的概念及有关性质的前提下,去研究学习的。重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。这节课主要是学生利用描点法画出函数的图像,并描述出函数的图像特征,从而指出函数的性质。使学生从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。设计背景:在新教材的教学中,我慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性,实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,它对于学生来说显得很抽象。所以如果再让让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。所以在教学中我尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识,是非常重要的。教学目标:一、知识:理解指数函数的定义,能初步把握指数函数的图像,性质及其简单应用。二、过程与方法:由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图像,(有条件的话借助计算机演示验证指数函数图像)由图像研究指数函数的性质。利用性质解决实际问题。三、能力:1.通过指数函数的图像和性质的研究,培养学生观察,分析和归纳的能力,进一步体会数形结合的思想方法。2.通过对指数函数的研究,使学生能把握函数研究的基本方法。教学过程:由实际问题引入:问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,„1个这样的细胞分裂x次后,得到的细胞的个数y与x之间的关系是什么?分裂次数与细胞个数1,2;2,2×2=22;3,2×2×2=23;„„„„;x,2×2×……×2=2x归纳:y=2x问题2:某种放射性物质不断变化为其它物质,每经过1年剩留的这种物质是原来的84%,那么经过x年后剩留量y与x的关系是什么?经过1年,剩留量y=1×84%=0.841;经过2年,剩留量y=0.84×0.84=0.842„„„„经过x年,剩留量y=0.84x寻找异同:你能从以上的两个例子中得到的关系式里找到什么异同点吗?共同点:变量x与y构成函数关系式,是指数的形式,自变量在指数位置,底数是常数;不同点:底数的取值不同。那么,今天我们来学习新的一个基本函数:指数函数得到指数函数的定义:定义:形如y=ax(a>0且a≠1)的函数叫做指数函数。在以前我们学过的函数中,一次函数用形如y=kx+b(k≠0)的形式表示,反比例函数用形如y=k/x(k≠0)表示,二次函数y=ax2+bx+c(a≠0)表示。对于其一般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。若an若a=1,则=1,是一个常量,也没有研究的必要。所以有规定且a>0且a≠1。由定义,我们可以对指数函数有一初步熟悉。进一步理解函数的定义:指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R.研究函数的途径:由函数的图像的性质,从形与数两方面研究。学习函数的一个很重要的目标就是应用,那么首先要对函数作一研究,研究函数的图像及性质,然后利用其图像性质去解决数学问题和实际问题。根据以往的经验,你会从那几个角度考虑?(图像的分布范围,图像的变化趋势,„)图像的分布情况与函数的定义域,值域有关,函数的变化趋势体现函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。首先我们做出指数函数的图像,我们研究一般性的事物,常用的方法是:由特殊到一般。我们以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图像,将学生画的函数图像展示,(画函数的图像的步骤是:列表,描点,连线。)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且,画出取不同的值时,函数的图像。要求学生描述出指数函数图像的特征,并试着描述出性质。数学发展的历史表明,每一个重要的数学概念的形成和发展,其中都有丰富的经历,新课程较好的体现了这点。对新课程背景下的学生而言,数学的知识应该是一个数学化的过程,即通过对常识材料进行细致的观察、思考,借助于分析、比较、综合、抽象、概括等思维活动,对常识材料进行去粗取精、去伪存真的精加工。该案例正是从数学研究和数学实验的过程中进行设计。虽然学生的思维不一定真实的重演了人类对数学知识探索的全过程,但确确实实通过实验、观察、比较、分析、归纳、抽象、概括等思维活动,在探索中将数学数学化,从而才使学生对数学学习产生了乐趣,对数学的研究方法有了一定的了解。虽然学生要学的数学是历史上前人已建构好了的,但对他们而言,仍是全新的、未知的,需要用他们自己的学习活动来再现类似的过程。该案例正是从创设问题情景作为教学设计的重要的内容之一。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,侧重于学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。教师的地位应由主导者转变为引导者,使教学活动真正成为学生的活动。在教学过程中,把学习的主动权交给学生,在时间和空间上保证学生在教师的指导下,学生能自己独立自主的探究学习。使教学活动始终处于学生的“最近

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论