版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学的说课稿【7篇】高中数学说课稿篇一尊敬的各位评委、各位老师大家好!我说课的题目是《直线的点斜式方程》,选自人民教育出版社普通高中课程标准试验教科书数学必修2(A版),是第三章直线与方程中的第2节的第一课时3.2.1直线的点斜式方程的内容。下面我将从教学背景、教学方法、教学过程及教学特点等四个方面具体说明。一、教学背景的分析1.教材分析直线的方程是学生在初中学习了一次函数的概念和图象及高中学习了直线的斜率后进行研究的。直线的方程属于解析几何学的基础知识,是研究解析几何学的开始,对后续研究两条直线的位置关系、圆的方程、直线与圆的位置关系、圆锥曲线等内容,无论在知识上还是方法上都是地位显要,作用非同寻常,是本章的重点内容之一。“直线的点斜式方程”可以说是直线的方程的形式中最重要、最基本的形式,在此花多大的时间和精力都不为过。直线作为常见的最简单的曲线,在实际生活和生产实践中有着广泛的应用。同时在这一节中利用坐标法来研究曲线的数形结合、几何直观等数学思想将贯穿于我们整个高中数学教学。2.学情分析我校的生源较差,学生的基础和学习习惯都有待加强。又由于刚开始学习解析几何,第一次用坐标法来求曲线的方程,在学习过程中,会出现“数”与“形”相互转化的困难。另外我校学生在探究问题的能力,合作交流的意识等方面更有待加强。根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:3.教学目标(1)了解直线的方程的概念和直线的点斜式方程的推导过程及方法;(2)明确点斜式、斜截式方程的形式特点和适用范围;初步学会准确地使用直线的点斜式、斜截式方程;(3)从实例入手,通过类比、推广、特殊化等,使学生体会从特殊到一般再到特殊的认知规律;(4)提倡学生用旧知识解决新问题,通过体会直线的斜截式方程与一次函数的关系等活动,培养学生主动探究知识、合作交流的意识,并初步了解数形结合在解析几何中的应用。4.教学重点与难点(1)重点:直线点斜式、斜截式方程的特点及其初步应用。(2)难点:直线的方程的概念,点斜式方程的推导及点斜式、斜截式方程的应用。二、教法学法分析1.教法分析:根据学情,为了能调动学生学习的积极性,本节课采用“实例引导的启发式”问题教学法。帮助学生将几何问题代数化,用代数的语言描述直线的几何要素及其关系,进而将直线的问题转化为直线方程的问题,通过对直线的方程的研究,最终解决有关直线的一些简单的问题。另外可以恰当的利用多媒体课件进行辅助教学,激发学生的学习兴趣。2.学法分析:学生从问题中尝试、总结、质疑、运用,体会学习数学的乐趣;通过推导直线的点斜式方程的学习,要了解用坐标法求方程的思想;通过一个点和方向可以确定一条直线,进而可求出直线的点斜式方程,要能体会“形”与“数”的转化思想。下面我就对具体的教学过程和设计加以说明:三、教学过程的设计及实施整个教学过程是由六个问题组成,共分为四个环节,学习或涉及四个概念:温故知新,澄清概念直线的方程深入探究,获得新知点斜式拓展知识,再获新知斜截式小结引申,思维延续两点式平面上的点可以用坐标表示,直线的倾斜程度可以用斜率表示,那么平面上的直线如何表示呢?这就是本节要学习的内容。(一)温故知新,澄清概念直线的方程问题一:画出一次函数y=2x+1的图象;y=2x+1是一个方程吗?若是,那么方程的解与图象上的点的坐标有何关系?[学生活动]通过动手画图,思考并尝试用语言进行初步的表述。[教师活动]对于不同学生的表述进行分析、归纳,用规范的语言对方程和直线的方程进行描述。[设计意图]从学生熟知的旧知识出发澄清直线的方程的概念,试图做到“用学生已有的数学知识去学数学”,从而突破难点。通过对这个问题的研究,一方面认识到以方程的解为坐标的点在直线上,另一方面认识到直线上的点的坐标满足方程;从而使同学意识到直线可以由直线上任意一点P(x,y)的坐标x和y之间的等量关系来表示。问题二:若直线经过点A(-1,3),斜率为-2,点P在直线l上。(1)若点P在直线l上从A点开始运动,横坐标增加1时,点P的坐标是;(2)画出直线l,你能求出直线l的方程吗?(3)若点P在直线l上运动,设P点的坐标为(x,y),你会有什么方法找到x,y满足的关系式?[学生活动]学生独立思考5分钟,必要的话可进行分组讨论、合作交流。[教师活动]巡视。肯定学生的各种方法及大胆尝试的行为;并引导学生观察发现,得到当点P在直线l上运动时(除点A外),点P与定点A(-1,3)所确定的直线的斜率恒等于-2,体会“动中有静”的思维策略。[设计意图]复习斜率公式;待定系数法;初步体会坐标法。同时引导学生注意为什么要把分式化简?(若不化简,就少一点),感受数学简洁的美感和严谨性。还要指出这样的事实:当点P在直线l上运动时,P的坐标(x,y)满足方程2x+y-1=0.反过来,以方程2x+y-1=0的解为坐标的点在直线l上。把学生的思维引到用坐标法研究直线的方程上来,此时再把问题深入,进入第二环节。(二)深入探究,获得新知点斜式问题三:①若直线l经过点P0(x0,y0),且斜率为k,求直线l的方程。②直线的点斜式方程能否表示经过P0(x0,y0)的所有直线?[学生活动]①学生叙述,老师板书,强调斜率公式与点斜式的区别。②指导学生用笔转一转不难发现,当直线l的倾斜角α=90°时,斜率k不存在,当然不存在点斜式方程;讨论k=0的情况;观察并总结点斜式方程的特征。[设计意图]由特殊到一般的学习思路,突破难点,培养学生的归纳概括能力。通过对这个问题的探究使学生获得直线点斜式方程;由②知:当直线斜率k不存在时,不能用点斜式方程表示直线,培养思维的严谨性,这时直线l与y轴平行,它上面的每一点的横坐标都等于x0,直线l的方程是:x=x0;通过学生的观察讨论总结,明确点斜式方程的形式特点和适用范围,通过下面的例题和基础练习,突破重难点。问题四:分别求经过点且满足下列条件的直线的方程(1)斜率;(2)倾斜角;(3)与轴平行;(4)与轴垂直。[练习]P95.1、2。[学生活动]学生独立完成并展示或叙述,老师点评。[设计意图]充分用好教材的例题和习题,因为这些题都是专家精心编排的,充分体现必要性及合理性;做到及时反馈,便于反思本环节的教学,指导下个环节的安排;突破重点内容后,进入第三环节。(三)拓展知识,再获新知斜截式问题五:(1)一条直线与y轴交于点(0,3),直线的斜率为2,求这条直线的方程。(2)若直线l斜率为k,且与y轴的交点是P(0,b),求直线l的方程。[学生活动]学生独立完成后口述,教师板书。[设计意图]由一般到特殊再到一般,培养学生的推理能力,同时引出截距的概念及斜截式方程,强调截距不是距离。类比点斜式明确斜截式方程的形式特点和适用范围及几何意义,并讨论其与一次函数的关系。通过下面的基础练习,突破重点。[练习]P95.3。[设计意图]充分用好教材习题,及时反馈本环节的教学情况,指导下个环节的安排。(四)小结引申,思维延续两点式课堂小结1、有哪些收获?(点斜式方程:;斜截式方程:;求直线方程的方法:公式法、等斜率法、待定系数法。)2、哪些地方还没有学好?问题六:(1)直线l过(1,0)点,且与直线平行,求直线l的方程。(2)直线l过点(2,-1)和点(3,-3),求直线l的方程。[学生活动]学生独立思考并尝试自主完成,可以相互讨论,探讨解题思路。[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,有时间的话,可以让学生口述解题思路,也可以投影学生的证明过程,纠正出现的错误,规范书写的格式;没时间就布置分层作业。[设计意图](1)小题与上一节的平行综合,学生应该有思路求出方程;(2)小题解决方法较多,预设有利用公式法、等斜率法、待定系数法,让好一点的学生有一些发散思维的机会,以及课后学习的空间,使探究气氛有一点高潮。另外也为下节课研究直线的两点式方程作了重要的准备。分层作业必做题:P100.A组:1.(1)(2)(3)、5.选做题:P100.A组:1.(4)(5)(6).[设计意图]通过分层作业,做到因材施教,使不同的学生在数学上得到不同的发展,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展。四、教学特点分析(一)实例引导。在字母运算、公式推导之前,总是用实例作为铺垫,使学生有学习知识的可能和兴趣,关注学困生的成长与发展。(二)启发式教学。教学中总是以提问的方式叙述所学内容,如:1.直角坐标系内的所有直线都有点斜式方程吗?2.截距是距离吗?它可以是负数吗?3.你会求直线在轴上的截距吗?4.观察方程,它的形式具有什么特点?它与我们学过的一次函数有什么关系?等等。启发学生的思维,作好与学生的对话与交流活动。(三)注重自主探究。设计问题链,环环相扣,使学生的探究活动贯穿始终。教师总是站在学生思维的最近发展区上,布设了由浅入深的学习环境突破重点、难点,引导学生逐步发现知识的形成过程。设计了两次思维发散点,分别是问题二和问题六的第(2)问,要求学生分组讨论,合作交流,为学生创造充分的探究空间,学生在交流成果的过程中,高效的完成教学任务。高中数学经典优秀说课稿篇二尊敬的各位教师,大家好,我是()场的()号考生。今日,我说课的资料是()对于本节课,我将从教什么、怎样教、为什么这么教来阐述本次说课。一、说教材教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5。3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。二、说学情合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:(一)知识与技能会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。(二)过程与方法经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。(三)情感态度价值观经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。四、说教学重难点本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点(一)教学重点由正弦函数的图象得到正弦函数的性质。(二)教学难点正弦函数的周期性和单调性。五、说教法和学法此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。六、说教学过程在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,限度的调动学生参与课堂的进取性、主动性。(一)新课导入首先是导入环节,在这一环节中我将采用复习的导入方法。我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。(二)新知探索接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。学生一边看投影,一边思考如下问题:(1)正弦函数的定义域是什么(2)正弦函数的值域是什么(3)正弦函数的最值情景如何(4)正弦函数的周期(5)正弦函数的奇偶性(6)正弦函数的递增区间给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。1、定义域:y=sinx定义域为R2、值域:引导学生回忆单位圆中的正弦函数线,发现值域为[—1,1]3、最值:根据值域的确定得到在何处取得最值以及函数的正负性。4、周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。5、奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。6、单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。(三)课堂练习第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的积极主动的探索中显得更有味道。(四)小结作业最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。高中数学说课稿篇三写好一篇说课稿就要说清为什么要这样教,所谓说清“为什么这样教”,就是平常我们所讲的找理论依据。理论依据从哪里找?下面是关于高中数学说课稿:《平面动点的轨迹》,欢迎借鉴!高中数学说课稿:《平面动点的轨迹》一、教学目标(一)知识与技能1、进一步熟练掌握求动点轨迹方程的基本方法。2、体会数学实验的直观性、有效性,提高几何画板的操作能力。(二)过程与方法1、培养学生观察能力、抽象概括能力及创新能力。2、体会感性到理性、形象到抽象的思维过程。3、强化类比、联想的方法,领会方程、数形结合等思想。(三)情感态度价值观1、感受动点轨迹的动态美、和谐美、对称美2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气二、教学重点与难点教学重点:运用类比、联想的方法探究不同条件下的轨迹教学难点:图形、文字、符号三种语言之间的过渡三、教学方法和手段【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。【教学模式】重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。四、教学过程n1、创设情景,引入课题生活中我们四处可见轨迹曲线的影子【演示】这是美丽的城市夜景图【演示】许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多【演示】建筑中也有许多美丽的轨迹曲线设计意图:让学生感受数学就在我们身边,感受轨迹曲线的动态美、和谐美、对称美,激发学习兴趣。n2、激发情感,引导探索靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;高中数学的说课稿篇四一、教材分析1、教材的地位和作用(1)本节课主要对函数单调性的学习;(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题(根据具体的课题改变就行了,如果不是热点难点问题就删掉)2、教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)二、教学目标知识目标:(1)函数单调性的定义(2)函数单调性的证明能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想情感目标:培养学生勇于探索的精神和善于合作的意识(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)三、教法学法分析1、教法分析"教必有法而教无定法",只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法2、学法分析"授人以鱼,不如授人以渔",最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。(前三部分用时控制在三分钟以内,可适当删减)四、教学过程1、以旧引新,导入新知通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)2、创设问题,探索新知紧接着提出问题,你能用二次函数f(x)=x表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。让学生模仿刚才的表述法来描述二次函数f(x)=x在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。3、例题讲解,学以致用例1主要是对函数单调区间的`巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。4、归纳小结本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。5、作业布置为了让学生学习不同的数学,我将采用分层布置作业的方式:一组习题1.3A组1、2、3,二组习题1.3A组2、3、B组1、26、板书设计我力求简洁明了地概括本节课的学习要点,让学生一目了然。(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)五、教学评价本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。高一数学必修一说课稿篇五二次函数的图像说课稿今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。一、教材分析教材的地位和作用本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。学情分析本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。二、教学目标分析基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:1、知识与技能理解二次函数中参数a,b,c,h,k对其图像的影响;2、过程与方法通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。3、情感态度与价值观通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。三、教学重难点分析通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下重点:二次函数图像的平移变换规律及应用。难点:探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。四、教法与学法分析1、教法分析基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。2、学法分析新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法进行学习。五、教学过程为了更好的实现本课的三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。(1)知识导入温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验。(2)讲授新课例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像让学生画出他们的图像并观察函数图像的特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a一、背景分析1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。教学重点:充分条件、必要条件和充要条件三个概念的定义。2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点。根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解。对于“B=A”,称A是B的必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。教学关键:找出A、B,根据定义判断A=B与B=A是否成立。教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。二、教学目标设计:(一)知识目标:1、正确理解充分条件、必要条件、充要条件三个概念。2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。(二)能力目标:1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。(三)情感目标:1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。三、教学结构设计:数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。整体思路为:教师创设情境,激发兴趣,引出课题引导学生分析实例,给出定义例题分析(采用开放式教学)知识小结扩展例题练习反馈整个教学设计的主要特色:(1)由生活事例引出课题;(2)采用开放式教学模式;(3)扩展例题是分析生活中的名言名句,又将数学融入生活中。努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。四、教学媒体设计:本节课是概念课,要避免单一的下定义作练习模式,应该努力使课堂元素更为丰富。这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背景,以激发学生的学习兴趣,另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。五、教学过程设计:第一,创设情境,激发兴趣,引出课题:考虑到高一学生学习这一章的知识储备不足,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。用这个事件目的是为了第二部分引导学生得出充分条件的定义。这里要强调该事件包括:A:有3米布料;B:做一件衬衫够了。第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:A:接氧气;B:活了。用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。第二,引导学生分析实例,给出定义。在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种命题”的知识来加强对必要条件定义的理解。(用前面的例子来说即:“活了,则说明在输氧”)可记作:。还应指出的是“必要条件”的定义,有如绕口令,要一次廓清,不可拖泥带水。这里,只要一下子“定义”清楚了,下边再解释“,A是B的必要条件”是怎么回事。这样处理,学生更容易接受“必要”二字。(因无A则无B,故欲有B,A是必要的)。当两个定义分别给出后,我又对它们之间的区别加以分析说明,(充分条件可能会有多余,浪费,必要条件可能还不足(以使事件B成立))从而顺理成章地引出充要条件的定义(既是必要条件,又是充分条件,就称为充分必要条件,简称充要条件,记作:。(不多不少,恰到好处)。使学生在此先对两个充分条件和必要条件两个概念的不同有了第一次的认识,第三部分再利用具体的数学事例来强化。高中数学说课稿篇七说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时平面向量数量积的物理背景及其含义。下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。一、背景分析1、学习任务分析平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。2、学生情况分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。二、教学目标设计《普通高中数学课程标准(实验)》对本节课的要求有以下三条:(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。(2)体会平面向量的数量积与向量投影的关系。(3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,并能运用性质和运算律进行相关的运算和判断;3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。三、课堂结构设计本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。四、教学媒体设计和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《LOGO标志设计》课件
- 牙齿抛光病因介绍
- 牙源性上颌窦炎病因介绍
- 开题报告:智能技术赋能的智慧生成性教学模式设计研究
- 铁路站房水电安装工程施工组织设计
- 开题报告:以文化人:大学红色文化育人体系研究
- 开题报告:新型城镇化背景下传统村落文化记忆的教育传承研究
- 开题报告:新时代儿童格局培育的时空路径研究
- 北京某高压燃气工程施工组织设计方案
- 2024年度健身器材采购与安装协议
- 人教版九年级化学上册《化石能源的合理利用》能源的合理利用与开发课件
- 2023六年级英语上册 Unit 3 Care for the earth说课稿 陕旅版(三起)
- DL∕T 1909-2018 -48V电力通信直流电源系统技术规范
- 红歌音乐会策划方案
- 《认知觉醒》- 周岭 - 读书笔记
- 投诉处理与反馈机制
- 高压电工作业第八章继电保护与二次系统
- 中央2024年中国日报社招聘社会人员笔试历年典型考题及考点附答案解析
- 提高教育管理与组织能力三篇
- 10《固体的混合与分离》教案三年级上册科学苏教版
- 老年人基础照护 协助老年人翻身、扣背促进有效排痰
评论
0/150
提交评论