版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学必修2教案10篇高一数学必修二知识点篇一高一数学必修二提纲1:一般式:Ax+By+C=0(A、B不同时为0)适用于所有直线K=-A/B,b=-C/BA1/A2=B1/B2≠C1/C2←→两直线平行A1/A2=B1/B2=C1/C2←→两直线重合横截距a=-C/A纵截距b=-C/B2:点斜式:y-y0=k(x-x0)适用于不垂直于x轴的直线表示斜率为k,且过(x0,y0)的直线3:截距式:x/a+y/b=1适用于不过原点或不垂直于x轴、y轴的直线表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线4:斜截式:y=kx+b适用于不垂直于x轴的直线表示斜率为k且y轴截距为b的直线5:两点式:适用于不垂直于x轴、y轴的直线表示过(x1,y1)和(x2,y2)的直线(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)6:交点式:f1(x,y)x+f2(x,y)=0适用于任何直线表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线7:点平式:f(x,y)-f(x0,y0)=0适用于任何直线表示过点(x0,y0)且与直线f(x,y)=0平行的直线8:法线式:x·cosα+ysinα-p=0适用于不平行于坐标轴的直线过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度9:点向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)适用于任何直线表示过点(x0,y0)且方向向量为(u,v)的直线10:法向式:a(x-x0)+b(y-y0)=0适用于任何直线表示过点(x0,y0)且与向量(a,b)垂直的直线11:点到直线距离点P(x0,y0)到直线Ι:Ax+By+C=0的距离d=|Ax0+By0+C|/√A2+B2两平行线之间距离若两平行直线的方程分别为:Ax+By+C1=OAx+By+C2=0则这两条平行直线间的距离d为:d=丨C1-C2丨/√(A2+B2)12:各种不同形式的直线方程的局限性:(1)点斜式和斜截式都不能表示斜率不存在的直线;(2)两点式不能表示与坐标轴平行的直线;(3)截距式不能表示与坐标轴平行或过原点的直线;(4)直线方程的一般式中系数A、B不能同时为零。13:位置关系若直线L1:A1x+B1y+C1=0与直线L2:A2x+B2y+C2=01.当A1B2-A2B1≠0时,相交2.A1/A2=B1/B2≠C1/C2,平行3.A1/A2=B1/B2=C1/C2,重合4.A1A2+B1B2=0,垂直高中数学快速解题法方法1、在解题的过程中,是一个思维的过程。一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,只要顺着这些解题的思路,就可以很容易的找到习题的答案。方法2、做一道题目时,最重要的就是审题。审题的第一步就是读题。读题时要慢,一边读、一边思考,要特别注意每一句话的内在含义,并从中找出隐含条件。很多人并没有养成这种习惯,结果常常会在做题的时候漏掉一些信息,所以在解题的时候要特别注意审题。方法3、在做了一定数量的习题后,就会对所涉及到的知识、解题方法有比较清晰的了解。这个时候就需要将这些知识进行归纳总结,以便以后的解题思路更加清晰,达到举一反三的效果,这样做数学题的速度就会大大提升了。方法4、做题只是学习过程中的一部分,所以不能为了解题而解题。解题时,脑海中的概念越清晰、对公式、定理越熟悉,解题的速度就越快。所以在解题时,应该先回归课本,熟悉基本内容,理解其正确的含义,接着再做后面的练习。方法5、有些题目,尤其是几何体,一定要学会画图。画图是一个把抽象思维变成形象思维的过程,会大大降低解题的难度。很多题目,只要分析图画出来之后,其中的关系就会变得一目了然。所以学会画图,对于提高解题速度非常重要。方法6、人对事物的认知总是会有一个从易到难的过程,简单的问题做多了,概念清晰了,对解题的步骤熟悉了,解题时就会形成跳跃思维,解题的速度也会大大的提高。所以在学习时,要根据自己的能力,去解那些看似简单,却比较重要的习题,来不断提高解题速度和解题能力。随着速度和能力的提高,在逐渐的去增加难度,就会事半功倍了。方法7、习惯很重要,很多同学做题速度慢就是平时做作业的时候习惯了拖延时间,从而导致了不好的解题习惯。所以想要提高做题速度,就要先改变拖沓的习惯。比较有效的方法是限时答题,在平常做作业的时候,给自己规定一个时间,先不管正确率,首先要保证在规定时间内完成数学作业,然后在去改正错误。时间长了之后,自然会改正拖延时间的坏毛病。学好数学的建议学数学没有捷径,只能踏踏实实做题,把每一种类型题都做会了,那么数学才有可能学好。在高中,没有必要去买数学辅导资料,只要把教材看透了,就能学好数学。课本怎么看?老师讲课之前看,看完例题做课后习题,把教材提前学会了。上课干什么?老师讲课还需认真听,然后再理解一遍,把定理、公式、定义等都背下来。当然,数学书不止看一遍,当做题不会时,还需要翻阅,当考试前也可以复习课本,平时还可以去看。数学光看书还远远不够,做题才是根本。课后练习册、数学卷子每道题都要认真去做,遇到不会的题目想方设法去解,实在做不出来了划重点,等课上重点去听,课下自己再重新做一遍,隔几天再拿出来做一遍。上数学课也是要做笔记的,做笔记能够让你复习时思路更清晰,看书时重点更明确,而且一些重要的东西书上往往没有,只有在笔记上才会有所体现,所以笔记要好好整理。但是,做笔记不能影响听课效果,如果跟不上可以课后借同学的抄。人教版高中数学必修2教案篇二讲义1:空间几何体一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体、台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征。三、教学难点:柱、锥、台、球的结构特征的概括。四、教学过程:(一)、新课导入:1、导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算。(二)、讲授新课:1、教学棱柱、棱锥的结构特征:①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②、定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱。→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽)。结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线。③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:棱柱ABCDE-A’B’C’D’E’④、讨论:埃及金字塔具有什么几何特征?⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥。结合图形认识:底面、侧面、侧棱、顶点、高。→讨论:棱锥如何分类及表示?⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。2、教学圆柱、圆锥的结构特征:①讨论:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥。→结合图形认识:底面、轴、侧面、母线、高。→表示方法③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?
→柱体、锥体。④观察书P2若干图形,找出相应几何体;三、巩固练习:1、已知圆锥的轴截面等腰三角形的腰长为5cm,,面积为12cm,求圆锥的底面半径。2、已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长。3、正四棱锥的底面积为46cm,侧面等腰三角形面积为6cm,求正四棱锥侧棱。(四)、教学棱台与圆台的结构特征:①讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?②定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台。结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高。讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?③讨论:棱台、圆台分别具有一些什么几何性质?22★棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点。★圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等。④讨论:棱、圆与柱、锥、台的组合得到6个几何体。棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?(以台体的上底面变化为线索)2.教学球体的结构特征:①定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体。结合图形认识:球心、半径、直径。→球的表示。②讨论:球有一些什么几何性质?③讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)3、教学简单组合体的结构特征:①讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?②定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体。4、练习:圆锥底面半径为1cm,其中有一个内接正方体,求这个内接正方体的棱长。(补充平行线分线段成比例定理)(五)、巩固练习:1、已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm,则长、宽、高分别为多少?2、棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高3、若棱长均相等的`三棱锥叫正四面体,求棱长为a的正四面体的高。★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。●解:考查其截面图,利用平行线的成比例,可得所求为9厘米。★例题2:已知三棱台ABC—A′B′C′的上、下两底均为正三角形,边长分别为3和6,平行于底面的截面将侧棱分为1:2两部分,求截面的面积。(4)★圆台的上、下度面半径分别为6和12,平行于底面的截面分高为2:1两部分,求截面的面积。(100π)▲
解决台体的平行于底面的截面问题,还台为锥是行之有效的一种方法。讲义2、空间几何体的三视图和直视图一、教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体。掌握斜二测画法;能用斜二测画法画空间几何体的直观图。二、教学重点:画出三视图、识别三视图。三、教学难点:识别三视图所表示的空间几何体。四、教学过程:(一)、新课导入:1、讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?2、引入:从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。”对于我们所学几何体,常用三视图和直观图来画在纸上。三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;直观图:观察者站在某一点观察几何体,画出的空间几何体的图形。
用途:工程建设、机械制造、日常生活。(二)、讲授新课:1、教学中心投影与平行投影:①投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以的抽象,总结其中的规律,提出了投影的方法。②中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形。③平行投影:在一束平行光线照射下形成的投影。分正投影、斜投影。→讨论:点、线、三角形在平行投影后的结果。2、教学柱、锥、台、球的三视图:①定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图②讨论:三视图与平面图形的关系?→画出长方体的三视图,并讨论所反应的长、宽、高③结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果。→正视图、侧视图、俯视图③试画出:棱柱、棱锥、棱台、圆台的三视图。(④讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。⑤讨论:根据以上的三视图,如何逆向得到几何体的形状。(试变化以上的三视图,说出相应几何体的摆放)3、教学简单组合体的三视图:①画出教材P16图(2)、(3)、(4)的三视图。②从教材P16思考中三视图,说出几何体。4、练习:①画出正四棱锥的三视图。④画出右图所示几何体的三视图。③右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状。(三)复习巩固高一必修二数学知识点篇三1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆。注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线5、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:它是判定两个平面相交的方法。它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。它可以判断点在直线上,即证若干个点共线的重要依据。公理3:经过不在同一条直线上的三点,有且只有一个平面。推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行高中数学必修二知识点总结:空间直线与直线之间的位置关系异面直线定义:不同在任何一个平面内的两条直线异面直线性质:既不平行,又不相交。异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点。三种位置关系的符号表示:aαa∩α=Aaα(9)平面与平面之间的位置关系:平行——没有公共点;αβ相交——有一条公共直线。α∩β=b2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)3、空间中的垂直问题(1)线线、面面、线面垂直的定义两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。4、空间角问题(1)直线与直线所成的角两平行直线所成的角:规定为。两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。(2)直线和平面所成的角平面的平行线与平面所成的角:规定为。平面的垂线与平面所成的角:规定为。平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。直二面角:平面角是直角的二面角叫直二面角。两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角必修二知识点总结:解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。(2)应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。高中数学必修2优秀教案篇四课题名称《2.1空间点、直线与平面之间的位置关系》科目高中数学教学时间1课时学习者分析通过第一章《空间几何体》的学习,学生对于立体几何已经有了初步的认识,能够识别棱柱、棱锥、棱台、圆柱、圆锥、圆台、球,并理解它们的几何特征。但是这种理解还只是建立在观察、感知的基础上的,对于原理学生是不明确的,所以学生此时有很强的求知欲,急于想搞清楚为什么;同时学生经过高中一年的学习,已经具备了一定的逻辑推理能力,只是缺乏训练,不够严密,不够清晰;有一定的自主探究和合作学习的能力,但有待提高,并愿意动手并参与分组讨论。教学目标一、知识与技能1、理解空间点、直线、平面的概念,知道空间点、直线、平面之间存在什么样的关系;2、记忆三公理三推论,能够用简单的语言概括三公理三推论,会用图形表示三公理三推论,并将其转化成数学符号语言;3、明确三公理三推论的功能,掌握使用三公理三推论解决立体几何问题的方法。二、过程与方法1、通过自己动手制作模型,直观地感知空间点、直线与平面之间的位置关系,以及三公理三推论;2、通过思考、讨论,发现三公理三推论的条件和结论;3、通过例题的训练,进一步理解三公理三推论,明确三公理三推论的功能。三、情感态度与价值观1、通过操作、观察、讨论培养对立体几何的兴趣,建立合作的意识;2、感受立体几何逻辑体系的严密性,培养学生细心的学习品质。教学重点、难点1、理解三公理三推论的概念及其内涵;2、使用三公理三推论解决立体几何问题。教学资源(1)每位同学准备两张硬纸板,其中一张中间用小刀划条缝,铅笔三根;(2)教师自制的多媒体课件。《2.1空间点、直线与平面之间的位置关系》教学过程的描述教学活动1一、导入新课1、
回忆构成平面图形的基本元素:点、直线。①两者都是最原始的概念,点没有大小、面积、厚度,直线是向两侧无限延伸的;②点用大写英文字母表示,直线用小写英文字母表示;③
如果将点看作元素,则直线是一系列点构成的集合,所以点在直线上记作,点不在直线上记作;2、提出问题:构成空间几何体有哪些基本元素?(大屏幕出示棱柱、棱锥、棱台)学生很快得到答案:点、直线、平面。3、引入课题:什么是平面?点、直线、平面之间有什么样的位置关系?平面有什么性质?这就是我们这堂课要研究的问题。教学活动2二、观察操作,合作探究1、理解平面的概念平面也是一个最原始的概念,是向四周无限延伸的,没有边界。一般用希腊字母、、,…表示平面,或者记为平面ABC,平面ABCD等等。2、明确空间点、直线、平面之间存在的位置关系①点与直线;②点与平面;③直线与平面。3、探究平面的性质⑴公理一①学生操作,研究如何将铅笔放置到硬纸板内问题一:铅笔与硬纸板只有一个公共点可以么?问题二:要将铅笔放置到硬纸板内至少需要几个公共点?学生通过操作,体会到要将铅笔放置到硬纸板内,只需将铅笔上两点放置到硬纸板内。②抽象出公理一问题一:如何用图形表示公理一?问题二:要求学生将公理一表示成数学符号的形式;问题三:公理一有什么功能?③动画演示公理一⑵公理二①学生操作,研究过空间中三点能确定几个平面问题一:若三点共线,能确定几个平面?问题二:要确定一个平面,需要三点满足什么条件?学生通过操作,体会公理二所表达的含义。②抽象出公理二问题一:如何用图形表示公理二?问题二:要求学生将公理二表示成数学符号的形式;问题三:还能根据什么条件确定一个平面?引出三推论。问题四:公理二及三推论有什么功能?③动画演示公理二及三推论⑶公理三①学生操作,展示两个平面只有一个公共点问题一:两个平面真的只有一个公共点么?问题二:这个公共点与这条公共直线有什么关系?学生通过操作,体会公理三所表达的含义。②抽象出公理三问题一:如何用图形表示公理三?问题二:要求学生将公理三表示成数学符号的形式;问题三:公理三有什么功能?③动画演示公理三教学活动3三、归纳总结,加深理解⒈平面具有无限延展性;⒉公理一有什么功能?条件是什么?⒊公理二有什么功能?条件是什么?⒋公理三有什么功能?条件是什么?教学活动4四、布置作业,课外研讨⒈课后练习P43:1、2、3、4;⒉平面几何中证明平行四边形有哪些定理?这些定理在空间中能否成立?说明理由。高中数学必修2教案篇五教学目标1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。教学重难点1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。教学过程一、创设情景,提出问题;设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实。基于此,设置如下情境:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。[问]你能在这个图中找出一些相等关系或不等关系吗?本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式在此基础上,引导学生认识基本不等式。三、理解升华:1、文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。2、联想数列的知识理解基本不等式已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?两个正数的等差中项不小于它们正的等比中项。3、符号语言叙述:4、探究基本不等式证明方法:[问]如何证明基本不等式?(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。)方法一:作差比较或由展开证明。方法二:分析法(完成课本填空)设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本。在教学中要让学生学会认真看书、用心思考,养成讲讲议议、动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法。5、探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。四、探究归纳下列命题中正确的是结论:若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值;若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。简记为:“一正、二定、三相等”。五、领悟练习:公式应用之二:(最优化问题)设计意图:新颖有趣、简单易懂、贴近生活的问题,不仅极大地增强学生的兴趣,拓宽学生的视野,更重要的是调动学生探究钻研的兴趣,引导学生加强对生活的关注,让学生体会:数学就在我们身边的生活中(1)在学农期间,生态园中有一块面积为100m2的矩形茶地,为了保护茶叶的健康生长,学校决定用篱笆围起来,问这个矩形的长、宽各为多少时,所用篱笆最短。最短的篱笆是多少?(2)现在学校仓库有一段长为36m的篱笆,要围成一个矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大。最大面积是多少?六、反思总结,整合新知:通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平。老师根据情况完善如下:两种思想:数形结合思想、归纳类比思想。三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等”高中数学必修2教案篇六一、教学目标1、知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。2、过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。3、情感态度与价值观:提高学生空间想象力,体会三视图的作用。二、教学重点:画出简单几何体、简单组合体的三视图;难点:识别三视图所表示的空间几何体。三、学法指导:观察、动手实践、讨论、类比。四、教学过程(一)创设情景,揭开课题展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。(二)讲授新课1、中心投影与平行投影:中心投影:光由一点向外散射形成的。投影;平行投影:在一束平行光线照射下形成的投影。正投影:在平行投影中,投影线正对着投影面。2、三视图:正视图:光线从几何体的前面向后面正投影,得到的投影图;侧视图:光线从几何体的左面向右面正投影,得到的投影图;俯视图:光线从几何体的上面向下面正投影,得到的投影图。三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。三视图的画法规则:长对正,高平齐,宽相等。长对正:正视图与俯视图的长相等,且相互对正;高平齐:正视图与侧视图的高度相等,且相互对齐;宽相等:俯视图与侧视图的宽度相等。3、画长方体的三视图:正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。4、画圆柱、圆锥的三视图:5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。(三)巩固练习课本P15练习1、2;P20习题1.2[A组]2。(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)布置作业课本P20习题1.2[A组]1。高一数学必修二教案篇七学习目标1.结合已学过的数学实例,了解归纳推理的含义;2.能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用。2.结合已学过的数学实例,了解类比推理的含义;3.能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用。学习过程一、课前准备问题3:因为三角形的内角和是,四边形的内角和是,五边形的内角和是……所以n边形的内角和是新知1:从以上事例可一发现:叫做合情推理。归纳推理和类比推理是数学中常用的合情推理。新知2:类比推理就是根据两类不同事物之间具有推测其中一类事物具有与另一类事物的性质的推理。简言之,类比推理是由的推理。新知3归纳推理就是根据一些事物的,推出该类事物的的推理。归纳是的过程例子:哥德巴赫猜想:观察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,16=13+3,18=11+7,20=13+7,……,50=13+37,……,100=3+97,猜想:归纳推理的一般步骤1通过观察个别情况发现某些相同的性质。2从已知的相同性质中推出一个明确表达的一般性命题(猜想)。※典型例题例1用推理的形式表示等差数列1,3,5,7……2n-1,……的前n项和Sn的归纳过程。变式1观察下列等式:1+3=4=,1+3+5=9=,1+3+5+7=16=,1+3+5+7+9=25=,……你能猜想到一个怎样的结论?变式2观察下列等式:1=11+8=9,1+8+27=36,1+8+27+64=100,……你能猜想到一个怎样的结论?例2设计算的值,同时作出归纳推理,并用n=40验证猜想是否正确。变式:(1)已知数列的第一项,且,试归纳出这个数列的通项公式例3:找出圆与球的相似之处,并用圆的性质类比球的有关性质。圆的概念和性质球的类似概念和性质圆的周长圆的面积圆心与弦(非直径)中点的连线垂直于弦与圆心距离相等的弦长相等,※动手试试1.观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?2如果一条直线和两条平行线中的一条相交,则必和另一条相交。3如果两条直线同时垂直于第三条直线,则这两条直线互相平行。三、总结提升※学习小结1.归纳推理的定义。2.归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).3.合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法高一必修二数学教案篇八一、教材分析函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。二、重难点分析根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。三、学情分析1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。四、目标分析1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。五、教法学法本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。高一必修二数学教案41、教材(教学内容)本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、2、设计理念本堂课采用“问题解决”教学模式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木材切削服务行业市场现状分析及未来三至五年行业预测报告
- 创意礼品行业现状分析及未来三至五年行业发展报告
- 摄影报道行业市场现状分析及未来三至五年行业预测报告
- 可编程逻辑控制器(PLC)行业未来三年发展洞察及预测分析报告
- 潮汐能发电行业风险投资态势及投融资策略指引报告
- 多功能医疗机器人行业市场现状分析及未来三至五年行业预测报告
- 云基础设施服务行业发展趋势预测及战略布局建议报告
- 智能浴室镜行业现状分析及未来三至五年行业发展报告
- 展览场馆设计行业市场现状分析及未来三至五年行业预测报告
- 为坐轮椅者提供出租车运输服务行业风险投资态势及投融资策略指引报告
- 《冬季常见病预防》课件
- 新生儿胃出血个案护理
- 大学生生涯规划程
- 工程项目管理(第五版)课件
- 新理性主义完整版本
- LF炉的脱氧工艺
- 小学数学计算教学(共36张PPT)
- 2024届安徽省合肥市42中学数学八年级第二学期期末监测试题含解析
- 面销培训课件
- 基坑降水施工技术规范
- 《人身保险》课件
评论
0/150
提交评论