版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省珠海市第十一中学中考冲刺卷数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是()A.A或B B.B或C C.C或D D.D或A2.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是103.下列命题是真命题的是()A.如实数a,b满足a2=b2,则a=bB.若实数a,b满足a<0,b<0,则ab<0C.“购买1张彩票就中奖”是不可能事件D.三角形的三个内角中最多有一个钝角4.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°5.“车辆随机到达一个路口,遇到红灯”这个事件是()A.不可能事件 B.不确定事件 C.确定事件 D.必然事件6.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠07.下列几何体中,俯视图为三角形的是()A. B. C. D.8.把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x) B.ax2(x﹣2)C.ax(x+1)(x﹣1) D.ax(x﹣1)29.在六张卡片上分别写有,π,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A. B. C. D.10.如果t>0,那么a+t与a的大小关系是()A.a+t>aB.a+t<aC.a+t≥aD.不能确定二、填空题(共7小题,每小题3分,满分21分)11.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.12.函数y=的自变量x的取值范围为____________.13.二次根式中的字母a的取值范围是_____.14.若一个多边形每个内角为140°,则这个多边形的边数是________.15.二次根式中,x的取值范围是.16.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=_____.17.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=()A.﹣1 B.4 C.﹣4 D.1三、解答题(共7小题,满分69分)18.(10分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.求证:AM是⊙O的切线;若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).19.(5分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为,图①中m的值为;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.20.(8分)某汽车专卖店销售A,B两种型号的汽车.上周销售额为96万元:本周销售额为62万元,销售情况如下表:A型汽车B型汽车上周13本周21(1)求每辆A型车和B型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?21.(10分)随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A:车价40万元以上;B:车价在20—40万元;C:车价在20万元以下;D:暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:(1)调查样本人数为__________,样本中B类人数百分比是_______,其所在扇形统计图中的圆心角度数是________;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.22.(10分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.(1)求证:△ACM∽△ABE.(2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.(3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.23.(12分)()如图①已知四边形中,,BC=b,,求:①对角线长度的最大值;②四边形的最大面积;(用含,的代数式表示)()如图②,四边形是某市规划用地的示意图,经测量得到如下数据:,,,,请你利用所学知识探索它的最大面积(结果保留根号)24.(14分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;CD总计/tA200Bx300总计/t240260500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.【详解】∵AB=BC=CD=1,∴当点A为原点时,|a|+|b|>2,不合题意;当点B为原点时,|a|+|b|=2,符合题意;当点C为原点时,|a|+|b|=2,符合题意;当点D为原点时,|a|+|b|>2,不合题意;故选:B.【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.2、A【解析】
根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故选A.考点:方差;算术平均数;中位数;众数.3、D【解析】
A.两个数的平方相等,这两个数不一定相等,有正负之分即可判断B.同号相乘为正,异号相乘为负,即可判断C.“购买1张彩票就中奖”是随机事件即可判断D.根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a,b满足a2=b2,则a=±b,A是假命题;数a,b满足a<0,b<0,则ab>0,B是假命题;若实“购买1张彩票就中奖”是随机事件,C是假命题;三角形的三个内角中最多有一个钝角,D是真命题;故选:D【点睛】本题考查了命题与定理,根据实际判断是解题的关键4、C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故选C.考点:1.面动旋转问题;2.平行线的性质;3.旋转的性质;4.等腰三角形的性质.5、B【解析】
根据事件发生的可能性大小判断相应事件的类型即可.【详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、C【解析】
根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.7、C【解析】
俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.8、D【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.【详解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选D.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.9、B【解析】
无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有,共2个,∴卡片上的数为无理数的概率是.故选B.【点睛】本题考查了无理数的定义及概率的计算.10、A【解析】试题分析:根据不等式的基本性质即可得到结果.t>0,∴a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.二、填空题(共7小题,每小题3分,满分21分)11、3【解析】
在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】解:根据题意得,=0.3,解得m=3.故答案为:3.【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.12、x≥-1【解析】试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.考点:函数自变量的取值范围.13、a≥﹣1.【解析】
根据二次根式的被开方数为非负数,可以得出关于a的不等式,继而求得a的取值范围.【详解】由分析可得,a+1≥0,解得:a≥﹣1.【点睛】熟练掌握二次根式被开方数为非负数是解答本题的关键.14、九【解析】
根据多边形的内角和定理:180°•(n-2)进行求解即可.【详解】由题意可得:180°(n−2)=140°n,解得n=9,故多边形是九边形.故答案为9.【点睛】本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.15、.【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.16、【解析】
先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【详解】如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案为-1.【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.17、1【解析】
据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可.【详解】∵点A(a,3)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣3,∴a+b=1,故选D.【点睛】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.三、解答题(共7小题,满分69分)18、(1)见解析;(2)【解析】
(1)根据题意,可得△BOC的等边三角形,进而可得∠BCO=∠BOC,根据角平分线的性质,可证得BD∥OA,根据∠BDM=90°,进而得到∠OAM=90°,即可得证;(2)连接AC,利用△AOC是等边三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的长,则S阴影=S梯形OADC﹣S扇形OAC即可得解.【详解】(1)证明:∵∠B=60°,OB=OC,∴△BOC是等边三角形,∴∠1=∠3=60°,∵OC平分∠AOB,∴∠1=∠2,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA为⊙O的半径,∴AM是⊙O的切线(2)解:连接AC,∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD=2,∴S阴影=S梯形OADC﹣S扇形OAC=×(4+2)×2﹣.【点睛】本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算.19、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解析】
(Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.【详解】解:(Ⅰ)本次接受随机抽样调查的学生人数为:=50(人),∵×100=31%,∴图①中m的值为31.故答案为50、31;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,∴这组数据的中位数是3;由条形统计图可得=3.1,∴这组数据的平均数是3.1.(Ⅲ)1500×18%=410(人).答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20、(1)A型车售价为18万元,B型车售价为26万元.(2)方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;方案二花费少.【解析】
(1)根据题意列出二元一次方程组即可求解;(2)由题意列出不等式即可求解.【详解】解:(1)设A型车售价为x元,B型车售价为y元,则:解得:答:A型车售价为18万元,B型车售价为26万元.(2)设A型车购买m辆,则B型车购买(6-m)辆,∴130≤18m+26(6-m)≤140,∴:2≤m≤方案一:A型车2辆,B型车4辆;方案二:A型车3辆,B型车3辆;∴方案二花费少【点睛】此题主要考查二元一次方程组与不等式的应用,解题的关键是根据题意列出方程组与不等式进行求解.21、(1)50,20%,72°.(2)图形见解析;(3)选出的2人来自不同科室的概率=35【解析】试题分析:(1)根据调查样本人数=A类的人数除以对应的百分比.样本中B类人数百分比=B类人数除以总人数,B类人数所在扇形统计图中的圆心角度数=B类人数的百分比×360°.(2)先求出样本中B类人数,再画图.(3)画树状图并求出选出的2人来自不同科室的概率.试题解析:(1)调查样本人数为4÷8%=50(人),样本中B类人数百分比(50﹣4﹣28﹣8)÷50=20%,B类人数所在扇形统计图中的圆心角度数是20%×360°=72°;(2)如图,样本中B类人数=50﹣4﹣28﹣8=10(人);(3)画树状图为:共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,所以选出的2人来自不同科室的概率=1220考点:1.条形统计图2.扇形统计图3.列表法与树状图法.22、(1)证明见解析;(2)证明见解析;(3)74.【解析】
(1)根据四边形ABCD和四边形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可证△ACM∽△ABE;(2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;(3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【详解】(1)证明:∵四边形ABCD和四边形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)证明:连结AC因为△ACM∽△ABE,则∠ACM=∠B=90°,因为∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因为MC=BE,FC=CE,所以MF=BC=BD,所以四边形BFMD是平行四边形(3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【点睛】本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.23、(1)①;②;(2)150+475+475.【解析】
(1)①由条件可知AC为直径,可知BD长度的最大值为AC的长,可求得答案;②连接AC,求得AD2+CD2,利用不等式的性质可求得AD•CD的最大值,从而可求得四边形ABCD面积的最大值;(2)连接AC,延长CB,过点A做AE⊥CB交CB的延长线于E,可先求得△ABC的面积,结合条件可求得∠D=45°,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D',交AC于F,FD'即为所求最大值,再求得
△ACD′的面积即可.【详解】(1)①因为∠B=∠D=90°,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD=,②连接AC,则AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四边形ABCD的最大面积=(a2+b2)+ab=;(2)如图,连接AC,延长CB,过点A作AE⊥CB交CB的延长线于E,因为AB=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因为BC=30,所以EC=EB+BC=40,AC==10,因为∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,则△ACD中,∠D为定角,对边AC为定边,所以,A、C、D点在同一个圆上,做AC、CD中垂线,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生职业生涯规划创业计划书模板30
- 《电气控制原理图》课件
- DB32T-建筑工程BIM规划报建数据规范编制说明
- 给予是快乐的课件公开课专用
- 《口腔洁治课件》课件
- 基因工程的基本操作程序课件
- 《TA沟通分析课程》课件
- 《伊犁河大桥》课件
- 生活处处有哲学课件
- 单位管理制度展示汇编【员工管理篇】
- 《铁路建设工程监理规范》基本规定
- 慢阻肺GOLD指南解读
- T-BIE 003-2023 通孔回流焊接技术规范
- 口腔颌面外科学 09颞下颌关节疾病
- 台达变频器说明书
- 2023年广东罗浮山旅游集团有限公司招聘笔试题库及答案解析
- DB11-T1835-2021 给水排水管道工程施工技术规程高清最新版
- 解剖篇2-1内脏系统消化呼吸生理学
- 《小学生错别字原因及对策研究(论文)》
- 智慧水库平台建设方案
- 粮食平房仓设计规范
评论
0/150
提交评论