河北省廊坊市里坦中学2022年高一数学文上学期期末试卷含解析_第1页
河北省廊坊市里坦中学2022年高一数学文上学期期末试卷含解析_第2页
河北省廊坊市里坦中学2022年高一数学文上学期期末试卷含解析_第3页
河北省廊坊市里坦中学2022年高一数学文上学期期末试卷含解析_第4页
河北省廊坊市里坦中学2022年高一数学文上学期期末试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省廊坊市里坦中学2022年高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则(

)A.sgn=sgnx B.sgn=﹣sgnx C.sgn=sgn D.sgn=﹣sgn参考答案:B【考点】函数与方程的综合运用.【专题】函数的性质及应用.【分析】直接利用特殊法,设出函数f(x),以及a的值,判断选项即可.【解答】解:由于本题是选择题,可以常用特殊法,符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),不妨令f(x)=x,a=2,则g(x)=f(x)﹣f(ax)=﹣x,sgn=﹣sgnx.所以A不正确,B正确,sgn=sgnx,C不正确;D正确;对于D,令f(x)=x+1,a=2,则g(x)=f(x)﹣f(ax)=﹣x,sgn=sgn(x+1)=;sgn=sgn(﹣x)=,﹣sgn=﹣sgn(x+1)=;所以D不正确;故选:B.【点评】本题考查函数表达式的比较,选取特殊值法是解决本题的关键,注意解题方法的积累,属于中档题.2.下列函数中,在区间上不是增函数的是

)A.

B.

C.

D.参考答案:B3.平面向量a与b的夹角为,,

(A)

(B)

(C)4

(D)12参考答案:B解析:由已知|a|=2,|a+2b|2=a2+4a·b+4b2=4+4×2×1×cos60°+4=12

∴10.若向量,则等于A.

B.

C.

D.参考答案:B略5.数a、b满足,下列5个关系式:①;②;③;④;⑤.其中不可能成立的关系有

A.2个

B.3个

C.4个

D.5个参考答案:A6.设不等式组,表示平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是(

)A.

B.

C.

D.参考答案:D7.集合{1,2,3}的真子集共有(

)A.5个

B.6个

C.7个

D.8个参考答案:C8.已知函数f(x)、g(x)都是R上的奇函数,不等式f(x)>0、g(x)>0的解集分别为(m,n)、,则不等式f(x)·g(x)>0的解集是()参考答案:D本题主要考查函数的性质及不等式的解集的知识.由已知得函数f(x)·g(x)为偶函数,偶函数的图象关于y轴对称,结合选项知只有D符合,故选D.9.已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为()A.8

B.

C.4

D.2参考答案:C略10.当时,的值是

(

)A.

B.

C.

D.不确定。参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知,,则=

.参考答案:12.的内角A、B、C的对边分别为,若成等比数列,且,则☆

.参考答案:13.若函数y=f(x)在(-∞,0)∪(0,+∞)上为奇函数,且在(0,+∞)上为增函数,f(-2)=0,则不等式x·f(x)<0的解集为________.参考答案:(-2,0)∪(0,2)略14.在△ABC中,若,则的值是_________。参考答案:

解析:

15.如果轴截面为正方形的圆柱的侧面积是,那么圆柱的体积等于____________.参考答案:略16.设a为常数且a<0,y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+﹣2,若f(x)≥a2﹣1对一切x≥0都成立,则a的取值范围为

.参考答案:[﹣1,0)【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】通过讨论x的范围,得到不等式,解出即可求出a的范围.【解答】解:当x=0时,f(x)=0,则0≥a2﹣1,解得﹣1≤a≤1,所以﹣1≤a<0当x>0时,﹣x<0,,则由对勾函数的图象可知,当时,有f(x)min=﹣2a+2所以﹣2a+2≥a2﹣1,即a2+2a﹣3≤0,解得﹣3≤a≤1,又a<0所以﹣3≤a<0,综上所述:﹣1≤a<0,故答案为:[﹣1,0).【点评】本题考查了函数的奇偶性问题,考查了对勾函数的单调性,是一道基础题.17.函数所过定点是

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列{an}中,,,数列{bn}满足,.(1)求数列{an}的通项公式;(2)证明:;(3)证明:.参考答案:(1);(2)证明见解析;(3)证明见解析.【分析】(1)代入可求得;利用可整理得,从而得到,采用累乘法可得,验证后可得;(2)由可知数列是正项单调递增数列,利用整理可得结论;(3)当时,结论显然成立;当时,结合(2)的结论可知,进一步将右侧缩为,整理可得,从而可得结论.【详解】(1)由得:由可得:两式相减得:,即:验证可知时,满足综上所述:(2)由,数列是正项单调递增数列当,,即

(3)当时,显然成立当时,综上可知,成立.【点睛】本题考查数列与不等式知识的综合应用,涉及到利用递推关系式求解数列的通项公式、放缩法证明与数列有关的不等式;难点是在证明不等式时,能够准确的进行放缩,从而能够采用裂项的方法来求和,根据和的范围得到结论,属于较难题.19.已知函数.(I)判断函数在的单调性并用定义证明;(II)令,求在区间的最大值的表达式.参考答案:解:(I)在递增;(证明略).(6分)(II)若,,在递增,,

若,)在递减,,

(9分)若,则 (11分)当时,函数递增,,

ks5u当时,函数递减,; (13分),当时,,当时,.综上:时,,当时,. (15分)略20.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对(x,y)表示“甲在x号车站下车,乙在y号车站下车”(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(2)求甲、乙两人同在第3号车站下车的概率;(3)求甲、乙两人在不同的车站下车的概率.参考答案:(1)(2,2)、(2,3)、(2,4)、(3,2)、(3,3)、(3,4)、(4,2)、(4,3)、(4,4)(2)(3)(1)甲、乙两人下车的所有可能的结果为(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)(2)设甲、乙两人同在第3号车站下车的的事件为A,则(3)设甲、乙两人在不同的车站下车的事件为B,则21.已知圆C:(x﹣1)2+y2=4(1)求过点P(3,3)且与圆C相切的直线l的方程;(2)已知直线m:x﹣y+1=0与圆C交于A、B两点,求|AB|参考答案:【考点】圆的切线方程.【专题】计算题;分类讨论;综合法;直线与圆.【分析】(1)设出切线方程,求出圆的圆心与半径,利用圆心到直线的距离等于半径,求出k,写出切线方程即可;(2)求出圆心到直线的距离,利用勾股定理求弦|AB|的长.【解答】解:(1)设切线方程为y﹣3=k(x﹣3),即kx﹣y﹣3k+3=0,∵圆心(1,0)到切线l的距离等于半径2,∴=2,解得k=,∴切线方程为y﹣3=(x﹣3),即5x﹣12y+21=0,当过点M的直线的斜率不存在时,其方程为x=3,圆心(1,0)到此直线的距离等于半径2,故直线x=3也适合题意.所以,所求的直线l的方程是5x﹣12y+21=0或x=3.(2)圆心到直线的距离d==,∴|AB|=2=2.【点评】本题考查直线与圆的位置关系,考查圆的切线方程的求法,注意直线的斜率存在与不存在情况,是本题的关键.22.如图所示,在四棱锥P—ABCD中,底面ABCD是边长为a的正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.(1)求证:EF∥平面PAD;(2)求证:平面PAB⊥平面PCD.参考答案:(1)连结AC,则F是AC的中点,E为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论