版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市瑶海区2021-2022学年中考数学押题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A. B. C. D.2.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.3.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是().A. B. C. D.4.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30° B.2,60° C.1,30° D.3,60°5.如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①;②当0<x<3时,;③如图,当x=3时,EF=;④当x>0时,随x的增大而增大,随x的增大而减小.其中正确结论的个数是()A.1 B.2 C.3 D.46.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为()A.6 B.9 C.11 D.无法计算7.的相反数是A.4 B. C. D.8.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是()A.2 B. C.2 D.59.若,则()A. B. C. D.10.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为D.圆锥形冰淇淋纸套的高为二、填空题(共7小题,每小题3分,满分21分)11.若代数式在实数范围内有意义,则x的取值范围是_______.12.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.13.因式分解:3x3﹣12x=_____.14.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组1~2组1~3组1~4组1~5组1~6组1~7组1~8组盖面朝上次数16533548363280194911221276盖面朝上频率0.5500.5580.5370.5270.5340.5270.5340.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.15.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是,=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣2,求旋转角a的度数.16.若式子有意义,则x的取值范围是.17.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.三、解答题(共7小题,满分69分)18.(10分)如图,在平行四边形中,的平分线与边相交于点.(1)求证;(2)若点与点重合,请直接写出四边形是哪种特殊的平行四边形.19.(5分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.[收集数据]从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:甲:乙:[整理、描述数据]按如下分数段整理、描述这两组样本数据:学校人数成绩甲乙(说明:优秀成绩为,良好成绩为合格成绩为.)[分析数据]两组样本数据的平均分、中位数、众数如下表所示:学校平均分中位数众数甲乙其中.[得出结论](1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是_校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取--名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由:;(至少从两个不同的角度说明推断的合理性)20.(8分)观察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的规律,写出第⑥个等式:_____;(2)模仿上面的方法,写出下面等式的左边:_____=502;(3)按照上面的规律,写出第n个等式,并证明其成立.21.(10分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元(1)笔记本和钢笔的单价各多少元?(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.22.(10分)某初中学校组织400位同学参加义务植树活动,每人植树的棵数在5至10之间,甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:表1:甲调查九年级30位同学植树情况统计表(单位:棵)每人植树情况78910人数36156频率0.10.20.50.2表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)每人植树情况678910人数363116频率0.10.20.10.40.2根据以上材料回答下列问题:(1)表1中30位同学植树情况的中位数是棵;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是,正确的数据应该是;(3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动400位同学一共植树多少棵?23.(12分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.(1)求二次函数的解析式;(2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;(3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.24.(14分)计算:﹣(﹣2016)0+|﹣3|﹣4cos45°.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:
红
红
红
绿
绿
红
﹣﹣﹣
(红,红)
(红,红)
(绿,红)
(绿,绿)
红
(红,红)
﹣﹣﹣
(红,红)
(绿,红)
(绿,红)
红
(红,红)
(红,红)
﹣﹣﹣
(绿,红)
(绿,红)
绿
(红,绿)
(红,绿)
(红,绿)
﹣﹣﹣
(绿,绿)
绿
(红,绿)
(红,绿)
(红,绿)
(绿,绿)
﹣﹣﹣
∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴,故选A.2、B【解析】试题分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.3、C【解析】
根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.4、B【解析】试题分析:∵∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等边三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距离和旋转角的度数分别为:2,60°故选B.考点:1、平移的性质;2、旋转的性质;3、等边三角形的判定5、C【解析】试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面积相等),选项①正确;∴C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0<x<2时,,选项②错误;当x=3时,,,即EF==,选项③正确;当x>0时,随x的增大而增大,随x的增大而减小,选项④正确,故选C.考点:反比例函数与一次函数的交点问题.6、B【解析】
有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.【详解】把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直线上,且AB为△ACH'的中线,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以阴影部分面积之和为S△ABC的3倍,又∵AB=2,AC=3,∴图中阴影部分的最大面积为3××2×3=9,故选B.【点睛】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3倍是解题的关键.7、A【解析】
直接利用相反数的定义结合绝对值的定义分析得出答案.【详解】-1的相反数为1,则1的绝对值是1.故选A.【点睛】本题考查了绝对值和相反数,正确把握相关定义是解题的关键.8、C【解析】
作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.【详解】解:作OH⊥AB于H,OG⊥CD于G,连接OA,由相交弦定理得,CE•ED=EA•BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE•ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由题意得,四边形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=,∴⊙O的直径为,故选C.【点睛】此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.9、D【解析】
等式左边为非负数,说明右边,由此可得b的取值范围.【详解】解:,
,解得故选D.【点睛】本题考查了二次根式的性质:,.10、C【解析】
根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.【详解】解:半径为12cm,圆心角为的扇形弧长是:,
设圆锥的底面半径是rcm,
则,
解得:.
即这个圆锥形冰淇淋纸套的底面半径是2cm.
圆锥形冰淇淋纸套的高为.
故选:C.【点睛】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵在实数范围内有意义,∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.12、【解析】
过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.13、3x(x+2)(x﹣2)【解析】
先提公因式3x,然后利用平方差公式进行分解即可.【详解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案为3x(x+2)(x﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14、0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【解析】
根据用频率估计概率解答即可.【详解】∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,∴这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15、(1)互相垂直;;(2)结论仍然成立,证明见解析;(3)135°.【解析】
(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;
(2)利用已知得出△BEC∽△AFC,进而得出∠1=∠2,即可得出答案;
(3)过点D作DH⊥BC于H,则DB=4-(6-2)=2-2,进而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,进而得出答案.【详解】解:(1)如图1,线段BE与AF的位置关系是互相垂直;
∵∠ACB=90°,BC=2,∠A=30°,
∴AC=2,
∵点E,F分别是线段BC,AC的中点,
∴=;(2))如图2,∵点E,F分别是线段BC,AC的中点,
∴EC=BC,FC=AC,
∴,
∵∠BCE=∠ACF=α,
∴△BEC∽△AFC,
∴,
∴∠1=∠2,
延长BE交AC于点O,交AF于点M
∵∠BOC=∠AOM,∠1=∠2
∴∠BCO=∠AMO=90°
∴BE⊥AF;(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°过点D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.16、且【解析】
∵式子在实数范围内有意义,∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.17、75°【解析】试题解析:∵直线l1∥l2,∴故答案为三、解答题(共7小题,满分69分)18、(1)见解析;(2)菱形.【解析】
(1)根据角平分线的性质可得∠ADE=∠CDE,再由平行线的性质可得AB∥CD,易得AD=AE,从而可证得结论;(2)若点与点重合,可证得AD=AB,根据邻边相等的平行四边形是菱形即可作出判断.【详解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵点E与B重合,∴AD=AB.∵四边形ABCD是平行四边形∴平行四边形ABCD为菱形.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质,菱形的性质,熟练掌握各知识是解题的关键.19、80;(1)甲;(2);(3)乙学校竞赛成绩较好,理由见解析【解析】
首先根据乙校的成绩结合众数的定义即可得出a的值;(1)根据两个学校成绩的中位数进一步判断即可;(2)根据概率的定义,结合乙校优秀成绩的概率进一步求解即可;(3)根据题意,从平均数以及中位数两方面加以比较分析即可.【详解】由乙校成绩可知,其中80出现的次数最多,故80为该组数据的众数,∴a=80,故答案为:80;(1)由表格可知,甲校成绩的中位数为60,乙校成绩的中位数为75,∵小明这次竞赛得了分,在他们学校排名属中游略偏上,∴小明为甲校学生,故答案为:甲;(2)乙校随便抽取一名学生的成绩,该学生成绩为优秀的概率为:,故答案为:;(3)乙校竞赛成绩较好,理由如下:因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多,综上所述,乙校竞赛成绩较好.【点睛】本题主要考查了众数、中位数、平均数的定义与简单概率的计算的综合运用,熟练掌握相关概念是解题关键.20、6×10+4=8248×52+4【解析】
(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.【详解】解:(1)由题目中的式子可得,第⑥个等式:6×10+4=82,故答案为6×10+4=82;(2)由题意可得,48×52+4=502,故答案为48×52+4;(3)第n个等式是:n×(n+4)+4=(n+2)2,证明:∵n×(n+4)+4=n2+4n+4=(n+2)2,∴n×(n+4)+4=(n+2)2成立.【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.21、(1)笔记本单价为14元,钢笔单价为15元;(2)y1=14×0.9x=12.6x,y2=15x0≤x≤10【解析】(1)设每个文具盒z元,每支钢笔y元,可列方程组得5z+2y=100,4z+7y=161.解之得答:每个文具盒14元,每支钢笔15元.(2)由题意知,y1关于x的函数关系式是y1=14×90%x,即y1=12.6x.买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y2=15x:当买10支以上时,超出的部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),即y2=12x+1.(3)因为x>10,所以y2=12x+1.当y1<y2,即12.6x<12x+1时,解得x<2;当y1=y2,即12.6x=12x+1时,解得x=2;当y1>y2,即12.6x>12x+1时,解得x>2.综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;当购买奖品2件时,买文具盒和买钢笔钱数相等;当购买奖品超过2件时,买钢笔省钱.22、(1)9;(2)11,12;(3)3360棵【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版建筑工程施工监理单位招标投标合同书3篇
- 二零二五版古籍文献储藏室修复合同3篇
- 二零二五年度高品质腻子施工服务供应合同2篇
- 二零二五版导游人员旅游安全责任合同3篇
- 小区车子棚施工合同(2篇)
- 2025年度新能源项目财务监督出纳人员担保合同2篇
- 二零二五版车位购置及租赁合同样本12篇
- 2025年度欠条收藏:古董字画修复与交易合同3篇
- 二零二五年度高新技术项目研发团队聘用合同范本3篇
- 二零二五年餐饮服务人员劳动合同样本12篇
- 新教材人教版高中物理选择性必修第二册全册各章节课时练习题及章末测验含答案解析(安培力洛伦兹力电磁感应交变电流等)
- 初级养老护理员培训全套
- 集中供热管网系统一次网的调节方法
- GB/T 41095-2021机械振动选择适当的机器振动标准的方法
- MRP、MPS计划文档教材
- 甲状腺疾病护理查房课件
- 安全安全带检查记录表
- GB∕T 26520-2021 工业氯化钙-行业标准
- 2022年浙江省绍兴市中考数学试题及参考答案
- Listen-to-this-3-英语高级听力-(整理版)
- 生活垃圾焚烧处理建设项目评价导则(2022)
评论
0/150
提交评论