专题8.2圆柱圆锥圆台的表面积与体积(3类必考点)(人教A版2019)(原卷版)_第1页
专题8.2圆柱圆锥圆台的表面积与体积(3类必考点)(人教A版2019)(原卷版)_第2页
专题8.2圆柱圆锥圆台的表面积与体积(3类必考点)(人教A版2019)(原卷版)_第3页
专题8.2圆柱圆锥圆台的表面积与体积(3类必考点)(人教A版2019)(原卷版)_第4页
专题8.2圆柱圆锥圆台的表面积与体积(3类必考点)(人教A版2019)(原卷版)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题8.2圆柱、圆锥、圆台的表面积与体积TOC\o"13"\h\z\t"正文,1"【考点1:圆柱的表面积与体积】 1【考点2:圆锥的表面积与体积】 4【考点3:圆台的表面积与体积】 5【基础知识】1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r+r′)l圆柱、圆锥、圆台侧面积间的关系:S圆柱侧=2πrleq\o(→,\s\up7(r′=r))S圆台侧=π(r+r′)leq\o(→,\s\up7(r′=0))S圆锥侧=πrl.2.空间几何体的表面积与体积公式名称几何体表面积体积圆柱S表面积=S侧+2S底V=Sh圆锥S表面积=S侧+S底V=eq\f(1,3)Sh圆台S表面积=S侧+S上+S下V=eq\f(1,3)(S上+S下+eq\r(S上S下))h[方法技巧]求空间几何体表面积的常见类型及思路求旋转体的表面积可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系[方法技巧]求空间几何体体积的常见类型及思路规则几何体若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法不规则几何体若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解【考点1:圆柱的表面积与体积】【知识点:圆柱的表面积与体积】1.(2024·陕西铜川·二模)已知一个圆柱的高不变,它的体积扩大为原来的倍,则它的侧面积扩大为原来的(

)A.倍 B.倍 C.倍 D.倍2.(2324高一下·全国·期末)若甲、乙两个圆柱的体积相等,底面积分别为和,侧面积分别为和.若,则(

)A. B. C. D.3.(2324高二上·浙江丽水·期末)如图,将一个圆柱等分切割,再将其重新组合成一个与圆柱等底等高的几何体,n越大,组合成的新几何体就越接近一个“长方体”.若新几何体的表面积比原圆柱的表面积增加了10,则圆柱的侧面积是(

)A. B. C. D.4.(2024·山东·二模)已知圆柱的底面半径为4,侧面面积为,则该圆柱的母线长等于.5.(2324高一上·广西贺州·期末)已知矩形的周长为,矩形绕它的一条边旋转成一个圆柱,则旋转形成的圆柱的侧面积最大为(结果保留);6.(2024高三下·贵州贵阳·阶段练习)某学生到某工厂进行劳动实践,利用3D打印技术制作模型.如图,该模型为一个大圆柱中挖去一个小圆柱后的剩余部分(两个圆柱底面圆的圆心重合),大圆柱的轴截面是边长为40cm的正方形,小圆柱的侧面积是大圆柱侧面积的一半,打印所用原料的密度为,不考虑打印损耗,制作该模型所需原料的质量为g.(取)7.(2024高二上·辽宁朝阳·阶段练习)定义如图所示的几何体为斜截圆柱(由不平行圆柱底面的平面截圆柱得到),已知斜截圆柱底面的直径为,母线长最短为、最长为,则斜截圆柱侧面展开图的面积.

8.(2324高一下·内蒙古鄂尔多斯·期末)如图所示,从底面半径为,高为的圆柱中,挖去一个底面半径为且与圆柱等高的圆柱,求原圆柱的表面积与挖去圆柱后的几何体的表面积的比值.

【考点2:圆锥的表面积与体积】【知识点:圆锥的表面积与体积】1.(2024·云南贵州·二模)底面积是,侧面积是的圆锥的体积是(

)A. B. C. D.2.(2324高一下·浙江金华·期中)侧面积为的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面半径为(

)A. B. C.2 D.13.(2324高一下·广东深圳·阶段练习)已知圆锥的母线长为,为底面的圆心,其侧面积等于,则该圆锥的体积为(

)A. B. C. D.4.(2324高三上·湖南·阶段练习)已知圆锥的体积为,它的侧面展开图是一个半圆,则此圆锥的侧面积为()A. B. C. D.5.(2324高二下·广东揭阳·阶段练习)如图,为圆锥面圆的一条直径,点为线段的中点,现沿将圆锥的侧面展开,所得的平面图形中为直角三角形,若.则圆锥的表面积为(

A. B. C. D.6.(多选)(2324高二下·河南郑州·阶段练习)如图是底面半径为3的圆锥,将其放倒在一平面上,使圆锥在此平面内绕圆锥顶点S滚动,当这个圆锥在平面内转回原位置时,圆锥本身恰好滚动了3周,则(

A.圆锥的母线长为3B.圆锥的表面积为C.圆锥的侧面展开图扇形的圆心角为D.若一蚂蚁从点A出发沿圆锥的侧面爬行一周回到点A,则爬行的最短距离为7.(2024·上海长宁·二模)用铁皮制作一个有底无盖的圆柱形容器,若该容器的容积为立方米,则至少需要平方米铁皮8.(2324高三下·上海浦东新·期中)如图,有一底面半径为1,高为3的圆柱.光源点沿着上底面圆周作匀速运动,射出的光线始终经过圆柱轴截面的中心.当光源点沿着上底面圆周运动半周时,其射出的光线在圆柱内部“扫过”的面积为.

【考点3:圆台的表面积与体积】【知识点:棱台的表面积与体积】1.(2024·福建漳州·模拟预测)一个圆台的上、下底面的半径分别为1和4,体积为,则它的表面积为(

)A. B. C. D.2.(2024·河南新乡·二模)设圆台的上、下底面的半径之比为,侧面积为,且上底面半径为质数,则该圆台的母线长为(

)A.2 B.3 C.5 D.63.(2324高三下·山东德州·开学考试)如图所示,某圆台型木桶(厚度不计)上下底面的面积分别为和,且木桶的体积为,则该木桶的侧面积为(

)A. B. C. D.4.(2024·吉林延边·一模)碗是人们日常必需的饮食器皿,碗的起源可追溯到新石器时代泥质陶制的碗,其形状与当今无多大区别,即口大底小,碗口宽而碗底窄,下有碗足.如图所示的一个碗口直径为9.3cm,碗底直径为3.8cm,高4cm,它的形状可以近似看作圆台,则其侧面积约为(

)A. B. C. D.5.(2024·全国·模拟预测)已知轴截面为正三角形的圆锥,被平行于底面的平面所截,截得的上、下两个几何体的表面积分别为,,体积分别为,,若,则的值为(

)A. B.C. D.6.(2024高三·全国·专题练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”,它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图①),图②是一个圆台的侧面展开图(扇形的一部分),若两个圆弧、所在圆的半径分别是3和6,且∠ABC=120°,则下列关于该圆台的说法错误的是(

)A.高为2 B.母线长为3C.表面积为14π D.体积为π7.(2024高一下·全

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论