版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省桃江县一中高一下数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知三角形为等边三角形,,设点满足,若,则()A. B. C. D.2.若直线y=﹣x+1的倾斜角为,则A. B.1 C. D.3.已知直线,与互相垂直,则的值是()A. B.或 C. D.或4.已知等差数列中,,,则的值为()A.51 B.34 C.64 D.5125.在公比为2的等比数列中,,则等于()A.4 B.8 C.12 D.246.如图,程序框图所进行的求和运算是()A. B.C. D.7.在中,,,则的最小值是()A.2 B.4 C. D.128.如图所示是正方体的平面展开图,在这个正方体中CN与BM所成角为()A.30° B.45° C.60° D.90°9.在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是()A. B. C. D.10.设,为两条不同的直线,,为两个不同的平面,给出下列命题:①若,,则;②若,,则;③若,,,则;④若,,则与所成的角和与所成的角相等.其中正确命题的序号是()A.①② B.①④ C.②③ D.②④二、填空题:本大题共6小题,每小题5分,共30分。11.在正方体中,是的中点,连接、,则异面直线、所成角的正弦值为_______.12.已知、的取值如表所示:01342.24.34.86.7从散点图分析,与线性相关,且,则______.13.函数()的值域是__________.14.设,数列满足,,将数列的前100项从大到小排列得到数列,若,则k的值为______;15.在长方体中,,,,如图,建立空间直角坐标系,则该长方体的中心的坐标为_________.16.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;③函数有三个零点;④函数在上单调递减,在上单调递增.其中正确的是__________.(填上所有正确说法的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=sinωx·cosωx+cos2ωx-(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为.(Ⅰ)求f(x)的表达式;(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调减区间.18.在中,角,,所对的边分别是,,,且.(1)求角;(2)若,求.19.若的最小值为.(1)求的表达式;(2)求能使的值,并求当取此值时,的最大值.20.在正方体中.(1)求证:;(2)是中点时,求直线与面所成角.21.向量函数.(1)求的最小正周期及单调增区间;(2)求在区间上的最大值和最小值及取最值时的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
用三角形的三边表示出,再根据已知的边的关系可得到关于的方程,解方程即得。【详解】由题得,,,整理得,化简得,解得.故选:D【点睛】本题考查平面向量的线性运算及平面向量基本定理,是常考题型。2、D【解析】
由题意利用直线的方程先求出它的斜率,可得它的倾斜角α,再利用特殊角的余弦值求得cosα.【详解】∵直线y=﹣x+1的斜率为﹣1,故它的倾斜角为α=135°,则cosα=cos135°=﹣cos45°,故选:D.【点睛】本题主要考查直线的斜率和倾斜角,特殊角的余弦值,属于基础题.3、B【解析】
根据直线垂直公式得到答案.【详解】已知直线,与互相垂直或故答案选B【点睛】本题考查了直线垂直的关系,意在考查学生的计算能力.4、A【解析】
根据等差数列性质;若,则即可。【详解】因为为等差数列,所以,,所以选择A【点睛】本题主要考查了等差数列比较重要的一个性质;在等差数列中若,则,属于基础题。5、D【解析】
由等比数列的性质可得,可求出,则答案可求解.【详解】等比数列的公比为2,由,即,所以舍所以故选:D【点睛】本题考查等比数列的性质和通项公式的应用,属于基础题.6、A【解析】
根据当型循环结构,依次代入计算的值,即可得输出的表达式.【详解】根据循环结构程序框图可知,,,,…,,跳出循环体,所以结果为,故选:A.【点睛】本题考查了当型循环结构的应用,执行循环体计算输出值,属于基础题.7、C【解析】
根据,,得到,,平方计算得到最小值.【详解】故答案为C【点睛】本题考查了向量的模,向量运算,均值不等式,意在考查学生的计算能力.8、C【解析】
把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故∠EBM(或其补角)为所求.再由△BEM是等边三角形,可得∠EBM=60°,从而得出结论.【详解】把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故异面直线CN与BM所成的角就是BE和BM所成的角,故∠EBM(或其补角)为所求,再由BEM是等边三角形,可得∠EBM=60,故选:C【点睛】本题主要考查了求异面直线所成的角,体现了转化的数学思想,属于中档题.9、C【解析】
记事件,基本事件是线段的长度,如下图所示,作于,作于,根据三角形的面积关系得,再由三角形的相似性得,可得事件的几何度量为线段的长度,可求得其概率.【详解】记事件,基本事件是线段的长度,如下图所示,作于,作于,因为,则有;化简得:,因为,则由三角形的相似性得,所以,事件的几何度量为线段的长度,因为,所以的面积大于的概率.故选:C【点睛】本题考查几何概型,属于基础题.常有以下一些方面需考虑几何概型,求解时需注意一些要点.(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域。(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用"比例解法求解几何概型的概率.10、D【解析】
根据线面平行的性质和面面垂直的判定可知②④正确.【详解】对于①,若,,或,故①错;对于②,过作一个平面,它与平面交于,则,因为,故,因为,故,故②成立;对于③,由面面垂直的性质定理可知前提条件缺少,故③错;对于④,如图所示,如果分别于平面斜交,且斜足分别为,在直线上分别截取斜线段、,使得,过分别作平面的垂线,垂足分别为,连接,则分别为与平面所成的角、与平面所成的角,因为,故,所以,故.当分别垂直于时,;当分别平行于时,;故与所成的角和与所成的角相等,故④正确.故选D.【点睛】本题考查空间中的点、线、面的位置关系,正确判断这些命题的真假的前提是熟悉公理、定理的前提条件,同时需要动态考虑它们的位置关系,观察是否有不同的情况出现.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
作出图形,设正方体的棱长为,取的中点,连接、,推导出,并证明出,可得出异面直线、所成的角为,并计算出、,可得出,进而得解.【详解】如下图所示,设正方体的棱长为,取的中点,连接、,为的中点,则,,且,为的中点,,,在正方体中,且,则四边形为平行四边形,,所以,异面直线、所成的角为,在中,,,.因此,异面直线、所成角的正弦值为.故答案为:.【点睛】本题考查异面直线所成角的正弦值的计算,考查计算能力,属于中等题.12、【解析】
根据数据表求解出,代入回归直线,求得的值.【详解】根据表中数据得:,又由回归方程知回归方程的斜率为截距本题正确结果:【点睛】本题考查利用回归直线求实际数据,关键在于明确回归直线恒过,从而可构造出关于的方程.13、【解析】
由,根据基本不等式即可得出,然后根据对数函数的单调性即可得出,即求出原函数的值域.【详解】解:,当且仅当,时取等号,;原函数的值域是.故答案为:.【点睛】考查函数的值域的定义及求法,基本不等式的应用,以及对数函数的单调性,增函数的定义.14、【解析】
根据递推公式利用数学归纳法分析出与的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.【详解】由已知,a1=a,0<a<1;并且函数y=ax单调递减;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……当为奇数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为奇数时,;当为偶数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为偶数时,;用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,,当时,符合,设时,,当时,因为,结合的单调性,所以,所以,所以,所以时成立,所以当为奇数时,,据此可知:,当时,若,则有,此时无解;当时,此时的下标成首项为公差为的等差数列,通项即为,若,所以,所以.故答案为:.【点睛】本题考查数列与函数的综合应用,难度较难.(1)分析数列的单调性时,要注意到数列作为特殊的函数,其定义域为;(2)证明数列的单调性可从与的关系入手分析.15、【解析】
先求出点B的坐标,再求出M的坐标.【详解】由题得B(4,6,0),,因为M点是中点,所以点M坐标为.故答案为【点睛】本题主要考查空间坐标的求法,意在考查学生对该知识的理解掌握水平,属于基础题.16、②③④【解析】
根据向量,函数零点,函数的导数,以及三角函数有关知识,对各个命题逐个判断即可.【详解】对①,若与的夹角为钝角,则且与不共线,即,解得且,所以①错误;对②,先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,得函数的图象,再将图象整体向左平移个单位,可得函数的图象,②正确;对③,函数的零点个数,即解的个数,亦即函数与的图象的交点个数,作出两函数的图象,如图所示:由图可知,③正确;对④,,当时,,当时,,故函数在上单调递减,在上单调递增,④正确.故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及向量数量积,三角函数图像变换,函数零点个数的求法,以及函数单调性的判断等知识的应用,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)f(x)=sin.(2)【解析】试题分析:(1)先利用二倍角公式和辅助角公式化简,再利用周期公式即可求得正解;(2)根据图像变换求出的表达式,再利用符合函数法求得递减区间.试题解析:(1)f(x)=sin2ωx+×-=sin2ωx+cos2ωx=sin,由题意知,最小正周期T=2×=,T===,所以ω=2,∴f(x)=sin.(2)将f(x)的图象向右平移个单位长度后,得到y=sin的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象.所以g(x)=sin.由,得所以所求的单调减区间为18、(1);(2).【解析】
(1)利用正弦定理化简即得;(2)由正弦定理得,再结合余弦定理可得.【详解】解:(1)由正弦定理得:,又,,得.(2)由正弦定理得:,又由余弦定理:,代入,可得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1);(2)的最大值为【解析】试题分析:(1)通过同角三角函数关系将化简,再对函数配方,然后讨论对称轴与区间的位置关系,从而求出的最小值;(2)由,则根据的解析式可知只能在内解方程,从而求出的值,即可求出的最大值.试题解析:(1)若,即,则当时,有最小值,;若,即,则当时,有最小值,若,即,则当时,有最小值,所以;(2)若,由所求的解析式知或由或(舍);由(舍)此时,得,所以时,,此时的最大值为.20、(1)见解析;(2).【解析】
(1)连接,证明平面,进而可得出;(2)连接、、,设,过点在平面内作,垂足为点,连接,设,则角和均为直线与平面所成的角,从而可得出,即可求出所求角.【详解】(1)如下图所示,连接,在正方体中,平面,平面,,四边形为正方形,,,平面,平面,;(2)连接、、,设,过点在平面内作,垂足为点,设,设正方体的棱长为,在正方体中,且,所以,四边形为平行四边形,,平面,平面,在平面内,,,,,则、、、四点共面,为的中点,,且,平面,平面,,由勾股定理得,连接,设,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- XX县有关农村部分计划生育家庭奖励扶助制度实施意见
- 《海关政策宣讲》课件
- 课题研究计划评语
- 高三化学教师工作计划高三化学备课工作计划
- 二年级学困生辅导计划
- 2024年秋季上学期班长工作计划
- 会计实习计划安排
- 大学学生会宣传部部长工作计划范文
- 2024机关后勤工作计划例文
- 部编二年级语文下册整册教学计划及各单元教学计划
- (高清正版)SL 310-2019 村镇供水工程技术规范(完整版)
- JTT 934-2021城市公共汽电车驾驶员操作规范_(高清-最新)
- 村级动物防疫员管理办法
- 烟草专卖公司证件管理工作总结汇报材料
- V带传动设计计算表
- ppt动态计时器(6分钟)
- 《工程与试验》编委会章程
- 实习录用通知书
- DFMEA模板全解(完整版)
- 苏教版二年级上册《连乘连除乘除混合》PPT
- 颈动脉狭窄的治疗策略CREST研究解读
评论
0/150
提交评论