版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年四川省遂宁市射洪中学高一数学第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.(2017新课标全国卷Ⅲ文科)已知椭圆C:的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A. B.C. D.2.某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元 B.65.5万元 C.67.7万元 D.72.0万元3.已知直线经过两点,则的斜率为()A. B. C. D.4.下列命题中正确的是()A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过一条直线有且只有一个平面与已知平面垂直C.如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面D.如果两条直线都垂直于同一平面,那么这两条直线共面5.从装有红球和绿球的口袋内任取2个球(其中红球和绿球都多于2个),那么互斥而不对立的两个事件是()A.至少有一个红球,至少有一个绿球B.恰有一个红球,恰有两个绿球C.至少有一个红球,都是红球D.至少有一个红球,都是绿球6.设函数,,其中,.若,且的最小正周期大于,则()A., B.,C., D.,7.已知圆锥的底面半径为,母线与底面所成的角为,则此圆锥的侧面积为()A. B. C. D.8.设,若3是与的等比中项,则的最小值为().A. B. C. D.9.()A.0 B. C. D.110.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列an中,a3=2,a12.已知正四棱锥的底面边长为,高为,则该四棱锥的侧面积是______________13.已知向量,向量,若与垂直,则__________.14.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则______.15.已知向量,,若与共线,则实数________.16.在中,角的对边分别为,若面积,则角__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四边形是边长为2的正方形,为的中点,以为折痕把折起,使点到达点的位置,且.(1)求证:平面平面;(2)求二面角的余弦值.18.已知向量,,且.(1)求向量的夹角;(2)求的值.19.已知等差数列满足.(1)求的通项公式;(2)设等比数列满足,求的前项和.20.已知.(1)化简;(2)若是第二象限角,且,求的值.21.如图,在正方形中,点是的中点,点是的中点,将分别沿折起,使两点重合于,连接.(1)求证:;(2)点是上一点,若平面,则为何值?并说明理由.(3)若,求二面角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】以线段为直径的圆的圆心为坐标原点,半径为,圆的方程为,直线与圆相切,所以圆心到直线的距离等于半径,即,整理可得,即即,从而,则椭圆的离心率,故选A.【名师点睛】解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2、B【解析】∵,∵数据的样本中心点在线性回归直线上,
回归方程中的为9.4∴线性回归方程是y=9.4x+9.1,
∴广告费用为6万元时销售额为9.4×6+9.1=65.5,
故选B.3、A【解析】
直接代入两点的斜率公式,计算即可得出答案。【详解】故选A【点睛】本题考查两点的斜率公式,属于基础题。4、D【解析】
利用定理及特例法逐一判断即可。【详解】解:如果两条直线都平行于同一个平面,那么这两条直线相交、平行或异面,故A不正确;过一条直线有且只有一个平面与已知平面垂直,不正确.反例:如果该直线本身就垂直于已知平面的话,那么可以找到无数个平面与已知平面垂直,故B不正确;如果这两条直线都在平面内且平行,那么这直线不平行于这个平面,故C不正确;如果两条直线都垂直于同一平面,则这两条直线平行,所以这两条直线共面,故D正确.故选:D.【点睛】本题主要考查了线线平行的判定,面面垂直的判定,线面平行的判定,线面垂直的性质,考查空间思维能力,属于中档题。5、B【解析】由于从口袋中任取2个球有三个事件,恰有一个红球,恰有两个绿球,一红球和一绿球.所以恰有一个红球,恰有两个绿球是互斥而不对立的两个事件.因而应选B.6、B【解析】
根据周期以及最值点和平衡位置点先分析的值,然后带入最值点计算的值.【详解】因为,,所以,则,所以,即,故;则,代入可得:且,所以.故选B.【点睛】(1)三角函数图象上,最值点和平衡位置的点之间相差奇数个四分之一周期的长度;(2)计算的值时,注意选用最值点或者非特殊位置点,不要选用平衡位置点(容易多解).7、B【解析】
首先计算出母线长,再利用圆锥的侧面积(其中为底面圆的半径,为母线长),即可得到答案.【详解】由于圆锥的底面半径,母线与底面所成的角为,所以母线长,故圆锥的侧面积;故答案选B【点睛】本题考查圆锥母线和侧面积的计算,解题关键是熟练掌握圆锥的侧面积的计算公式,即(其中为底面圆的半径,为母线长),属于基础题8、C【解析】
由3是与的等比中项,可得,再利用不等式知识可得的最小值.【详解】解:3是与的等比中项,,,=,故选C.【点睛】本题考查了指数式和对数式的互化,及均值不等式求最值的运用,考查了计算变通能力.9、C【解析】试题分析:考点:两角和正弦公式10、C【解析】
将平移到一起,根据等边三角形的性质判断出两条异面直线所成角的大小.【详解】连接如下图所示,由于分别是棱和棱的中点,故,根据正方体的性质可知,所以是异面直线所成的角,而三角形为等边三角形,故.故选C.【点睛】本小题主要考查空间异面直线所成角的大小的求法,考查空间想象能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】
先计算a5【详解】aaa故答案为4【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.12、【解析】四棱锥的侧面积是13、;【解析】
由计算可得.【详解】,∵与垂直,∴,.故答案为-1.【点睛】本题考查向量垂直的坐标运算.由向量垂直得其数量积为0,本题属于基础题.14、【解析】
利用三角函数的定义可求出的值.【详解】由三角函数的定义可得,故答案为.【点睛】本题考查利用三角函数的定义求余弦值,解题的关键就是三角函数定义的应用,考查计算能力,属于基础题.15、【解析】
根据平面向量的共线定理与坐标表示,列方程求出x的值.【详解】向量(3,﹣1),(x,2),若与共线,则3×2﹣(﹣1)•x=0,解得x=﹣1.故答案为﹣1.【点睛】本题考查了平面向量的共线定理与坐标表示的应用问题,是基础题.16、【解析】
根据面积公式计算出的值,然后利用反三角函数求解出的值.【详解】因为,所以,则,则有:.【点睛】本题考查三角形的面积公式以及余弦定理的应用,难度较易.利用面积公式的时候要选择合适的公式进行化简,可根据所求角进行选择.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)先由线面垂直的判定定理得到平面,进而可得平面平面;(2)先取中点,连结,,证明平面平面,在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.分别求出两平面的法向量,求向量夹角余弦值,即可求出结果.【详解】(1)因为四边形是正方形,所以折起后,且,因为,所以是正三角形,所以.又因为正方形中,为的中点,所以,所以,所以,所以,又因为,所以平面.又平面,所以平面平面.(2)取中点,连结,,则,,又,则平面.又平面,所以平面平面.在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.在中,,,.∴,,故,,,∴,.设平面的一个法向量为,则由,得,令,得,,∴.因为平面的法向量为,则,又二面角为锐二面角,∴二面角的余弦值为.【点睛】本题主要考查面面垂直的判定,以及二面角的余弦值,熟记面面垂直的判定定理、以及二面角的向量求法即可,属于常考题型.18、(1)(2)【解析】
(1)求出向量的模,对等式两边平方,最后可求出向量的夹角;(2)直接运用向量运算的公式进行运算即可.【详解】(1)向量,,,∴,又,∴,∴,∴,又∵,∴向量的夹角;(2)由(1),,,∴.【点睛】本题考查了平面向量的数量积定义,考查了平面向量的运算,考查了平面向量模公式,考查了数学运算能力.19、(1)(2)【解析】
(1)根据基本元的思想,将已知条件转化为的形式,列方程组,解方程组可求得的值.并由此求得数列的通项公式.(2)利用(1)的结论求得的值,根据基本元的思想,,将其转化为的形式,由此求得的值,根据等比数列前项和公式求得数列的前项和.【详解】解:(1)设的公差为,则由得,故的通项公式,即.(2)由(1)得.设的公比为,则,从而,故的前项和.【点睛】本小题主要考查利用基本元的思想解有关等差数列和等比数列的问题,属于基础题.20、(1)(2)【解析】
(1)利用三角函数的诱导公式即可求解.(2)利用诱导公式可得,再利用同角三角函数的基本关系即可求解.【详解】(1)由题意得.(2)∵,∴.又为第二象限角,∴,∴.【点睛】本题考查了三角函数的诱导公式以及同角三角函数的基本关系,属于基础题.21、(1)证明见详解;(2),理由见详解;(3).【解析】
(1)通过证明EF平面PBD,即可证明;(2)通过线面平行,将问题转化为线线平行,在平面图形中根据线段比例进而求解;(3)根据(1)(2)所得,找到二面角的平面角,然后再进行求解.【详解】(1)证明:因为四边形ABCD为正方形,故DAAE,DC,即折叠后的DP又因为平面PEF,平面PEF,故DP平面PEF,又平面PEF,故.在正方形ABCD中,容易知EF,又平面PBD,平面PBD,故EF平面PBD,又平面PBD故,即证.(2)连接BD交EF于O,连接OM,作图如下因为//平面,平面PBD,平面PBD平面=MO故//MO在中,由,以及E、F分别是正方形ABCD两边的中点,故可得即为所求.(3)过M作MH垂直于BD,垂足为H,连接OP,作图如下:由(1)可知:EF平面PBD,因为MH平面PBD,故EF又,平面EDF,BD平面EDF,故MH平面EDF,又因为BDEF,故即为所求二面角的平面角.设正方形ABCD的边长为4,因为,故PM=1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实验室安全教育实践提升员工安全意识
- 小微企业在区域经济发展中的地位和作用研究
- 2025年苏科版六年级语文上册阶段测试试卷
- 2024年物业租赁合同修改版
- 2025年人教新起点七年级科学上册月考试卷含答案
- 2025年沪科新版八年级化学下册阶段测试试卷含答案
- 2024物流企业员工劳动合同及加班工资计算标准3篇
- 四氟隔膜压力表真空表安全操作规程
- 2025年人教版(2024)七年级数学下册阶段测试试卷
- 2025年北师大版七年级地理上册月考试卷含答案
- 2022阀门制造作业指导书
- 科技创新社团活动教案课程
- 建筑结构加固工程施工质量验收规范表格
- 部编版语文六年级上册作文总复习课件
- SHS5230三星指纹锁中文说明书
- 无水氯化钙MSDS资料
- 专利产品“修理”与“再造”的区分
- 氨碱法纯碱生产工艺概述
- 健康管理专业建设规划
- 指挥中心大厅及机房装修施工组织方案
- 真心英雄合唱歌词
评论
0/150
提交评论