版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省莆田市仙游县枫亭中学2024年高一数学第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆心在轴上的圆经过,两点,则的方程为()A. B.C. D.2.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.3.等比数列的前项和为,若,则公比()A. B. C. D.4.椭圆以轴和轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A. B.C.或 D.或5.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为,若将军从山脚下的点处出发,河岸线所在直线方程为,则“将军饮马”的最短总路程为()A.4 B.5 C. D.6.不等式的解集为,则的值为(
)A. B.C. D.7.已知点,直线过点,且与线段相交,则直线的斜率满足()A.或 B.或 C. D.8.数列中,,且,则数列前2019项和为()A. B. C. D.9.如图所示,在ΔABC,已知∠A:∠B=1:2,角C的平分线CD把三角形面积分为3:2两部分,则cosAA.13 B.12 C.310.若,,且,则与的夹角是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.正项等比数列中,为数列的前n项和,,则的取值范围是____________.12.据两个变量、之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系_____(答是与否).13.用数学归纳法证明不等式“(且)”的过程中,第一步:当时,不等式左边应等于__________。14.一组样本数据8,10,18,12的方差为___________.15.已知数列的前n项和,则________.16.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中数列是公比为的等比数列,数列是公差为的等差数列.(1)若,,分别写出数列和数列的通项公式;(2)若是奇函数,且,求;(3)若函数的图像关于点对称,且当时,函数取得最小值,求的最小值.18.如图,在中,,为内一点,.(1)若,求;(2)若,求的面积.19.已知分别为内角的对边试从下列①②条件中任选一个作为已知条件并完成下列(1)(2)两问的解答①;②.(1)求角(2)若,,求的面积.20.已知,且.(1)求的值;(2)求的值.21.某运动爱好者对自己的步行运动距离(单位:千米)和步行运动时间(单位:分钟)进行统计,得到如下的统计资料:如果与存在线性相关关系,(1)求线性回归方程(精确到0.01);(2)将分钟的时间数据称为有效运动数据,现从这6个时间数据中任取3个,求抽取的3个数据恰有两个为有效运动数据的概率.参考数据:,参考公式:,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由圆心在轴上设出圆心坐标,设出圆的方程,将,两点坐标代入,即可求得圆心坐标和半径,进而得圆的方程.【详解】因为圆心在轴上,设圆心坐标为,半径为设圆的方程为因为圆经过,两点代入可得解方程求得所以圆C的方程为故选:A【点睛】本题考查了圆的方程求法,关键是求出圆心和半径,属于基础题.2、C【解析】
根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.3、A【解析】
将转化为关于的方程,解方程可得的值.【详解】∵,∴,又,∴.故选A.【点睛】本题考查等比数列的基本运算,等比数列中共有五个量,其中是基本量,这五个量可“知三求二”,求解的实质是解方程或解方程组.4、C【解析】
由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),分类讨论,即可求解.【详解】由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),则若焦点在x轴上,则,,椭圆方程为;若焦点在y轴上,则,,椭圆方程为,故选C.【点睛】本题主要考查了椭圆的方程的求解,其中解答中熟记椭圆的标准方程的形式,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解析】
求出点A关于直线的对称点,再求解该对称点与B点的距离,即为所求.【详解】根据题意,作图如下:因为点,设其关于直线的对称点为故可得,解得,即故“将军饮马”的最短总路程为.故选:C.【点睛】本题考查点关于直线的对称点的坐标的求解,以及两点之间的距离公式,属基础题.6、B【解析】
根据一元二次不等式解集与对应一元二次方程根的关系列方程组,解得a,c的值.【详解】由题意得为方程两根,所以,选B.【点睛】一元二次方程的根与对应一元二次不等式解集以及对应二次函数零点的关系,是数形结合思想,等价转化思想的具体体现,注意转化时的等价性.7、A【解析】
画出三点的图像,根据的斜率,求得直线斜率的取值范围.【详解】如图所示,过点作直线轴交线段于点,作由直线①直线与线段的交点在线段(除去点)上时,直线的倾斜角为钝角,斜率的范围是.②直线与线段的交点在线段(除去点)上时,直线的倾斜角为锐角,斜率的范围是.因为,,所以直线的斜率满足或.故选:A.【点睛】本小题主要考查两点求斜率的公式,考查数形结合的数学思想方法,考查分类讨论的数学思想方法,属于基础题.8、B【解析】
由,可得,化为:,利用“累加求和”方法可得,再利用裂项求和法即可得解.【详解】解:∵,∴,整理得:,∴,又∴,可得:.则数列前2019项和为:.故选B.【点睛】本题主要考查了数列递推关系、“累加求和”方法、裂项求和,考查了推理能力、转化能力与计算能力,属于中档题.9、C【解析】
由两个三角形的面积比,得到边ACCB=32,利用正弦定理【详解】∵角C的平分线CD,∴∠ACD=∠BCD∵S∴设AC=3x,CB=2x,∵∠A:∠B=1:2,设∠A=α,∠B=2α,在ΔABC中,利用正弦定理2xsin解得:cosα=【点睛】本题考查三角形面积公式、正弦定理在平面几何中的综合应用.10、B【解析】
根据相互垂直的向量数量积为零,求出与的夹角.【详解】由题有,即,故,因为,所以.故选:B.【点睛】本题考查了向量的数量积运算,向量夹角的求解,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用结合基本不等式求得的取值范围【详解】由题意知,,且,所以,当且仅当等号成立,所以.故答案为:【点睛】本题考查等比数列的前n项和及性质,利用性质结合基本不等式求最值是关键12、否【解析】
根据散点图的分布来判断出两个变量是否具有线性相关关系.【详解】由散点图可知,散点图分布无任何规律,不在一条直线附近,所以,这两个变量没有线性相关关系,故答案为否.【点睛】本题考查利用散点图判断两变量之间的线性相关关系,考查对散点图概念的理解,属于基础题.13、【解析】
用数学归纳法证明不等式(且),第一步,即时,分母从3到6,列出式子,得到答案.【详解】用数学归纳法证明不等式(且),第一步,时,左边式子中每项的分母从3开始增大至6,所以应是.即为答案.【点睛】本题考查数学归纳法的基本步骤,属于简单题.14、14【解析】
直接利用平均数和方差的公式,即可得到本题答案.【详解】平均数,方差.故答案为:14【点睛】本题主要考查平均数公式与方差公式的应用.15、【解析】
先利用求出,在利用裂项求和即可.【详解】解:当时,,当时,,综上,,,,故答案为:.【点睛】本题考查和的关系求通项公式,以及裂项求和,是基础题.16、【解析】
假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【点睛】本题考查异面直线所成的角,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2);(3)1【解析】
(1)根据等差数列、等比数列的通项公式即可求解;(2)根据奇函数的定义得出,化简得,解方程可得(3)将化成的形式,依题意有,从而得到,因为当时,函数取得最小值,所以,两式相减即可求解.【详解】(1)由等差数列、等比数列的通项公式可得,;(2)因为,所以即,所以又由,得(3)记,则,其中;因为的图像关于点对称,所以①因为当时,函数取得最小值,所以②②-①得,因为,当,时,取得最小值为0【点睛】本题主要考查了等差数列、等比数列的通项公式的求法、三角函数的化简以及正弦型函数图像的性质,考查较全面,属于难题.18、(1);(2).【解析】
(1)求出,,中由余弦定理即可求得;(2)设,利用正弦定理表示出,求得,利用面积公式即可得解.【详解】(1)在中,,为内一点,,,所以,中,由余弦定理得:所以中,由余弦定理得:;(2),设,在中,,在中,由正弦定理,即,,所以,的面积.【点睛】此题考查解三角形,对正余弦定理的综合使用,涉及两角差的正弦公式以及同角三角函数关系的使用,综合性较强.19、(1)选择①,;选择②,(2)【解析】
(1)选择①,利用正弦定理余弦定理化简即得C;选择②,利用正弦定理化简即得C的值;(2)根据余弦定理得,再求的面积.【详解】解:(1)选择①根据正弦定理得,从而可得,根据余弦定理,解得,因为,故.选择②根据正弦定理有,即,即因为,故,从而有,故(2)根据余弦定理得,得,即,解得,又因为的面积为,故的面积为.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.20、(1)(2)【解析】
(1)由即可求得;(2)可由的差角公式进行求解【详解】(1)由题可知,,,(2),又由前式可判断,,,故,【点睛】本题考查三角函数的计算,二倍角公式的使用,两角差公式的使用,易错点为忽略具体的角度范围,属于中档题21、(1)(2)【解析】
(1)先计算所给数据距离、时间的平均值,,利用公式求,再利用回归方程求.(2)由(1)计算的个数,先求从6个中任取3个数据的总的取法,再计算抽取的3个数据恰有两个为有效运动数据的取法,利用古典概型概率计算公式可得所求.【详解】解:(1)依题意得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑学咨询行业市场调研分析报告
- 充电桩智能管理行业营销策略方案
- 公司治理法律服务行业经营分析报告
- 印刷机用盘纸产业链招商引资的调研报告
- 女式披肩产品供应链分析
- 安排举办和组织专家讨论会行业相关项目经营管理报告
- 室内用空气芳香剂产业链招商引资的调研报告
- 木片切削机产品供应链分析
- 宽顶无沿圆帽产业链招商引资的调研报告
- 工业用封口机产品供应链分析
- DB44-T 2474-2024 自然教育标识设置指引
- 安宁疗护之癌痛管理
- 2024年开封文投文化产业发展集团招聘笔试冲刺题(带答案解析)
- 中国狼疮肾炎诊断和治疗指南解读
- 2024个人车位转让协议合同范本
- 意识障碍的鉴别与诊断思路
- (高清版)JTG D81-2017 公路交通安全设施设计规范
- 2024电站锅炉性能试验规程
- 备战2024年高考英语考试易错点11 定语从句(4大陷阱)(解析版)
- A型肉毒素治疗知情同意书 注射知情同意书
- 专科护士培训基地工作汇报
评论
0/150
提交评论