宁夏中卫市一中2023-2024学年数学高一下期末联考模拟试题含解析_第1页
宁夏中卫市一中2023-2024学年数学高一下期末联考模拟试题含解析_第2页
宁夏中卫市一中2023-2024学年数学高一下期末联考模拟试题含解析_第3页
宁夏中卫市一中2023-2024学年数学高一下期末联考模拟试题含解析_第4页
宁夏中卫市一中2023-2024学年数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏中卫市一中2023-2024学年数学高一下期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,且,则()A. B. C. D.2.如图,两点为山脚下两处水平地面上的观测点,在两处观察点观察山顶点的仰角分别为,若,,且观察点之间的距离比山的高度多100米,则山的高度为()A.100米 B.110米 C.120米 D.130米3.在下列各图中,每个图的两个变量具有相关关系的图是()A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)4.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法,求某多项式值的一个实例,若输入的值分别为4和2,则输出的值为()A.32 B.64 C.65 D.1305.已知向量,且,则().A. B.C. D.6.已知锐角△ABC的面积为,BC=4,CA=3,则角C的大小为()A.75° B.60° C.45° D.30°7.已知等差数列的公差,前项和为,则对正整数,下列四个结论中:(1)成等差数列,也可能成等比数列;(2)成等差数列,但不可能成等比数列;(3)可能成等比数列,但不可能成等差数列;(4)不可能成等比数列,也不叫能成等差数列.正确的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)8.一只小狗在图所示的方砖上走来走去,最终停在涂色方砖的概率为()A. B. C. D.9.将函数的图象向左平移个长度单位后,所得到的图象关于轴对称,则的最小值是()A. B. C. D.10.如图所示的阴影部分是由轴及曲线围成,在矩形区域内随机取一点,则该点取自阴影部分的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中角所对的边分别为,若则___________12.若向量,,且,则实数______.13.已知函数fx=cosx+2cosx,14.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;15.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-516.若角的终边经过点,则的值为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的单调递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,且,,求△ABC的面积的最大值.18.如图,已知四棱锥的侧棱底面,且底面是直角梯形,,,,,,点在棱上,且.(1)证明:平面;(2)求三棱锥的体积.19.如图,已知四棱锥,底面为菱形,,,平面,分别是的中点.(1)证明:;(2)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值.20.某建筑公司用8000万元购得一块空地,计划在该地块上建造一栋至少12层、每层4000平方米的楼房.经初步估计得知,如果将楼房建为x(x≥12)层,则每平方米的平均建筑费用为Q(x)=3000+50x(单位:元).(1)求楼房每平方米的平均综合费用f(x)的解析式.(2)为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?每平方米的平均综合费用最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)21.已知,函数,,(1)证明:是奇函数;(2)如果方程只有一个实数解,求a的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据不等式的性质,一一分析选择正误即可.【详解】根据不等式的性质,当时,对于A,若,则,故A错误;对于B,若,则,故B错误;对于C,若,则,故C错误;对于D,当时,总有成立,故D正确;故选:D.【点睛】本题考查不等式的基本性质,属于基础题.2、A【解析】

设山的高度为,求出AB=2x,根据,求出山的高度.【详解】设山的高度为,如图,由,有.在中,,有,又由观察点之间的距离比山的高度多100,有.故山的高度为100.故选A【点睛】本题主要考查解三角形的实际应用,意在考查学生对该知识的理解掌握水平,属于基础题.3、D【解析】

仔细观察图象,寻找散点图间的相互关系,主要观察这些散点是否围绕一条曲线附近排列着,由此能够得到正确答案.【详解】散点图(1)中,所有的散点都在曲线上,所以(1)具有函数关系;

散点图(2)中,所有的散点都分布在一条直线的附近,所以(2)具有相关关系;

散点图(3)中,所有的散点都分布在一条曲线的附近,所以(3)具有相关关系,

散点图(4)中,所有的散点杂乱无章,没有分布在一条曲线的附近,所以(4)没有相关关系.

故选D.【点睛】本题考查散点图和相关关系,是基础题.4、C【解析】程序运行循环时变量值为:;;;,退出循环,输出,故选C.5、D【解析】

运用平面向量的加法的几何意义,结合等式,把其中的向量都转化为以为起点的向量的形式,即可求出的表示.【详解】,,故本题选D.【点睛】本题考查了平面向量加法的几何意义,属于基础题.6、B【解析】试题分析:由三角形的面积公式,得,即,解得,又因为三角形为锐角三角形,所以.考点:三角形的面积公式.7、D【解析】试题分析:根据等差数列的性质,,,,因此(1)错误,(2)正确,由上显然有,,,,故(3)错误,(4)正确.即填(2)(4).考点:等差数列的前项和,等差数列与等比数列的定义.8、C【解析】

方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可计算出所求事件的概率.【详解】由图形可知,方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可知,小狗最终停在涂色方砖的概率为,故选:C.【点睛】本题考查利用几何概型概率公式计算事件的概率,解题时要理解事件的基本类型,正确选择古典概型和几何概型概率公式进行计算,考查计算能力,属于基础题.9、B【解析】

试题分析:由题意得,,令,可得函数的图象对称轴方程为,取是轴右侧且距离轴最近的对称轴,因为将函数的图象向左平移个长度单位后得到的图象关于轴对称,的最小值为,故选B.考点:两角和与差的正弦函数及三角函数的图象与性质.【方法点晴】本题主要考查了两角和与差的正弦函数及三角函数的图象与性质,将三角函数图象向左平移个单位,所得图象关于轴对称,求的最小值,着重考查了三角函数的化简、三角函数图象的对称性等知识的灵活应用,本题的解答中利用辅助角公式,化简得到函数,可取出函数的对称轴,确定距离最近的点,即可得到结论.10、A【解析】,所以,故选A。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,;由正弦定理,得,解得.考点:正弦定理.12、【解析】

根据,两个向量平行的条件是建立等式,解之即可.【详解】解:因为,,且所以解得故答案为:【点睛】本题主要考查两个向量坐标形式的平行的充要条件,属于基础题.13、(0,1)【解析】

画出函数f(x)在x∈0,2【详解】解:画出函数y=cosx+2|cosx|=3cos以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.14、【解析】

以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.15、④【解析】

由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【点睛】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.16、.【解析】

根据三角函数的定义求出的值,然后利用反三角函数的定义得出的值.【详解】由三角函数的定义可得,,故答案为.【点睛】本题考查三角函数的定义以及反三角函数的定义,解本题的关键就是利用三角函数的定义求出的值,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】

(1)利用二倍角公式、辅助角公式进行化简,,然后根据单调区间对应的的公式求解单调区间;(2)根据计算出的值,再利用余弦定理计算出的最大值则可求面积的最大值,注意不等式取等号条件.【详解】解:(1)∴函数的单调递增区间为,(2)由(1)知得(舍)或∴有余弦定理得即∴当且仅当时取等号∴【点睛】(1)辅助角公式:;(2)三角形中,已知一边及其对应角时,若要求解面积最大值,在未给定三角形形状时,可选用余弦定理求解更方便,若是给定三角形形状,这时选用正弦定理并需要对角的范围作出判断.18、(1)见证明;(2)4【解析】

(1)取的三等分点,使,证四边形为平行四边形,运用线面平行判定定理证明.(2)三棱锥的体积可以用求出结果.【详解】(1)证明:取的三等分点,使,连接,.因为,,所以,.因为,,所以,,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)解:因为,,所以的面积为,因为底面,所以三棱锥的高为,所以三棱锥的体积为.因为,所以三棱锥的高为,所以三棱锥的体积为,故三棱锥的体积为.【点睛】本题考查了线面平行的判定定理、三棱锥体积的计算,在证明线面平行时需要构造平行四边形来证明,三棱锥的体积计算可以选用割、补等方法.19、(1)见解析;(2)【解析】

(1)证明,利用平面即可证得,问题得证.(2)过点作于点,过点作于点,连接.当与垂直时,与平面所成最大角,利用该最大角的正切值为即可求得,证明就是二面角的一个平面角,解即可.【详解】(1)因为底面为菱形,所以为等边三角形,又为中点所以,又所以因为平面,平面所以,又所以平面(2)过点作于点,过点作于点,连接当与垂直时,与平面所成最大角.由(1)得,此时.所以就是与平面所成的角.在中,由题意可得:,又所以.设,在中由等面积法得:解得:,所以因为平面,平面所以平面平面,又平面平面,,平面所以平面,又平面所以,又,所以平面,所以所以就是二面角的一个平面角因为为的中点,且所以,又所以在中,求得:,,由可得:,即:,解得:所以所以所以二面角的余弦值为【点睛】本题主要考查了线面垂直的证明,考查了转化能力,还考查了线面角知识,考查了二面角的平面角作法,考查空间思维能力及解三角形,考查了方程思想及计算能力,属于难题.20、(1);(2)该楼房应建为20层,每平方米的平均综合费用最小值为5000元.【解析】【试题分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论