上海市奉贤区2023-2024学年高一下数学期末质量跟踪监视试题含解析_第1页
上海市奉贤区2023-2024学年高一下数学期末质量跟踪监视试题含解析_第2页
上海市奉贤区2023-2024学年高一下数学期末质量跟踪监视试题含解析_第3页
上海市奉贤区2023-2024学年高一下数学期末质量跟踪监视试题含解析_第4页
上海市奉贤区2023-2024学年高一下数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市奉贤区2023-2024学年高一下数学期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是一三棱锥的三视图,则此三棱锥内切球的体积为()A. B. C. D.2.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位3.等比数列中,,,则公比()A.1 B.2 C.3 D.44.直线x﹣y+2=0与圆x2+(y﹣1)2=4的位置关系是()A.相交 B.相切 C.相离 D.不确定5.己知的周长为,内切圆的半径为,,则的值为()A. B. C. D.6.设直线l1:3x+2ay-5=0,l2:3a-1x-ay-2=0,若l1与A.-16 B.0或7.若,且,则的值是()A. B. C. D.8.函数的对称中心是()A. B. C. D.9.函数的图象如图所示,则y的表达式为()A. B.C. D.10.某市新上了一批便民公共自行车,有绿色和橙黄色两种颜色,且绿色公共自行车和橙黄色公共自行车的数量比为2∶1,现在按照分层抽样的方法抽取36辆这样的公共自行车放在某校门口,则其中绿色公共自行车的辆数是()A.8 B.12 C.16 D.24二、填空题:本大题共6小题,每小题5分,共30分。11.一条河的两岸平行,河的宽度为560m,一艘船从一岸出发到河对岸,已知船的静水速度,水流速度,则行驶航程最短时,所用时间是__________(精确到).12.设为等差数列的前n项和,,则________.13.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是______14.在锐角△中,角所对应的边分别为,若,则角等于________.15.已知1,,,,4成等比数列,则______.16.向边长为的正方形内随机投粒豆子,其中粒豆子落在到正方形的顶点的距离不大于的区域内(图中阴影区域),由此可估计的近似值为______.(保留四位有效数字)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从含有两件正品和一件次品的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求:(1)一切可能的结果组成的基本事件空间.(2)取出的两件产品中恰有一件次品的概率18.已知角的终边经过点.(1)求的值;(2)求的值.19.在四棱锥中,底面是平行四边形,平面,点,分别为,的中点,且,,.(1)证明:平面;(2)求直线与平面所成角的余弦值.20.如图,是正方形,是正方形的中心,底面是的中点.(1)求证:平面;(2)若,求三棱锥的体积.21.已知的顶点,边上的高所在的直线方程为,为的中点,且所在的直线方程为.(1)求顶点的坐标;(2)求过点且在轴、轴上的截距相等的直线的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】把此三棱锥嵌入长宽高分别为:的长方体中三棱锥即为所求的三棱锥其中,,,则,故可求得三棱锥各面面积分别为:,,,故表面积为三棱锥体积设内切球半径为,则故三棱锥内切球体积故选2、D【解析】

根据三角函数图象的平移变换可直接得到图象变换的过程.【详解】因为,所以向右平移个单位即可得到的图象.故选:D.【点睛】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.3、B【解析】

将与用首项和公比表示出来,解方程组即可.【详解】因为,且,故:,且,解得:,即,故选:B.【点睛】本题考查求解等比数列的基本量,属基础题.4、A【解析】

求得圆心到直线的距离,然后和圆的半径比较大小,从而判定两者位置关系,得到答案.【详解】由题意,可得圆心到直线的距离为,所以直线与圆相交.故选:A.【点睛】本题主要考查了直线与圆的位置关系判定,其中解答中熟记直线与圆的位置关系的判定方法是解答的关键,着重考查了推理与计算能力,属于基础题.5、C【解析】

根据的周长为,内切圆的半径为,求得,再利用正弦定理,得到,然后代入余弦定理,化简得到求解.【详解】因为的周长为,内切圆的半径为,所以,又因为,所以.由余弦定理得:,,所以,所以,即,因为A为内角,所以,所以.故选:C【点睛】本题主要考查了正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.6、B【解析】

通过两条直线平行的关系,可建立关于a的方程,解方程求得结果。【详解】l1//解得:a=0或-本题正确选项:B【点睛】本题考察直线位置关系问题。关键是通过两直线平行,得到:A17、A【解析】

对两边平方,可得,进而可得,再根据,可知,由此即可求出结果.【详解】因为,所以,所以,所以,又,所以所以.故选:A.【点睛】本题主要考查了同角的基本关系,属于基础题.8、C【解析】,设是奇函数,其图象关于原点对称,而函数的图象可由的图象向右平移一个单位,向下平移两个单位得到,所以函数的图象关于点对称,故选C.9、B【解析】

根据图像最大值和最小值可得,根据最大值和最小值的所对应的的值,可得周期,然后由,得到,代入点,结合的范围,得到答案.【详解】根据图像可得,,即,根据,得,所以,代入,得,所以,,所以,又因,所以得,所以得到,故选B.【点睛】本题考查根据函数图像求正弦型函数的解析式,属于简单题.10、D【解析】设放在该校门口的绿色公共自行车的辆数是x,则,解得x=1.故选D二、填空题:本大题共6小题,每小题5分,共30分。11、6【解析】

先确定船的方向,再求出船的速度和时间.【详解】因为行程最短,所以船应该朝上游的方向行驶,所以船的速度为km/h,所以所用时间是.故答案为6【点睛】本题主要考查平面向量的应用,意在考查学生对该知识的理解掌握水平,属于基础题.12、54.【解析】

设首项为,公差为,利用等差数列的前n项和公式列出方程组,解方程求解即可.【详解】设首项为,公差为,由题意,可得解得所以.【点睛】本题主要考查了等差数列的前n项和公式,解方程的思想,属于中档题.13、1.1【解析】

先求出这组数据的平均数,由此能求出这组数据的方差.【详解】八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的平均数为:(87+88+90+91+92+93+93+94)=91,∴这组数据的方差为:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案为1.1.【点睛】本题考查方差的求法,考查平均数、方差的性质等基础知识,考查了推理能力与计算能力,是基础题.14、【解析】试题分析:利用正弦定理化简,得,因为,所以,因为为锐角,所以.考点:正弦定理的应用.【方法点晴】本题主要考查了正弦定理的应用、以及特殊角的三角函数值问题,其中解答中涉及到解三角形中的边角互化,转化为三角函数求值的应用,解答中熟练掌握正弦定理的变形,完成条件的边角互化是解答的关键,注重考查了分析问题和解答问题的能力,同时注意条件中锐角三角形,属于中档试题.15、2【解析】

因为1,,,,4成等比数列,根据等比数列的性质,可得,再利用,确定取值.【详解】因为1,,,,4成等比数列,所以,所以或,又因为,所以.故答案为:2【点睛】本题主要考查等比数列的性质,还考查运算求解的能力,属于基础题.16、3.1【解析】

根据已知条件求出满足条件的正方形的面积,及到顶点的距离不大于1的区域(图中阴影区域)的面积比值等于频率即可求出答案.【详解】依题意得,正方形的面积,阴影部分的面积,故落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的概率,随机投10000粒豆子,其中1968粒豆子落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的频率为:,即有:,解得:,故答案为3.1.【点睛】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件的基本事件对应的“几何度量”(A),再求出总的基本事件对应的“几何度量”,最后根据求解.利用频率约等于概率,即可求解。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)和;(2)【解析】

(1)注意先后顺序以及是不放回的抽取;(2)在所有可能的事件中寻找符合要求的事件,然后利用古典概型概率计算公式求解即可.【详解】(1)每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即和其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品(2)用A表示“取出的两种中,恰好有一件次品”这一事件,则∴事件A由4个基本事件组成,因而,=.【点睛】本题考查挂古典概型的基本概率计算,难度较易.对于放回或不放回的问题,一定要注意区分其中的不同.18、(1);(2)【解析】

(1)直接利用任意角的三角函数的定义,求得的值.(2)利用诱导公式化简所给的式子,再把代入,求得结果.【详解】解:(1)因为角的终边经过点由三角函数的定义可知.(2)由(1)知,.【点睛】本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.19、(1)见解析(2)【解析】

(1)取中点,连接,,构造平行四边形,由线线平行得到线面平行;(2)根据线面角的定义作出线面角,在直角三角形中求出数值.【详解】(1)证明:取中点,连接,,∵为中点,∴,且,又为中点,底面为平行四边形,∴,,∴,,即为平行四边形,∴,又平面,且平面,∴平面.(2)∵平面,平面,∴平面平面,过作,则平面,连结,则为直线与平面所成的夹角,由,,,得,由,得,在中,,得,在中,,∴,即直线与平面所成角的余弦值为.【点睛】这个题目考查了空间中的直线和平面的位置关系.求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.20、(1)证明见解析;(2).【解析】

(1)由平面得出,由底面为正方形得出,再利用直线与平面垂直的判定定理可证明平面;(2)由勾股定理计算出,由点为线段的中点得知点到平面的距离等于,并计算出的面积,最后利用锥体的体积公式可计算出三棱锥的体积.【详解】(1)平面,平面,,又为正方形,,又平面,平面,,平面;(2)由题意知:,又,,,点到面的距离为,.【点睛】本题考查直线与平面垂直的判定,考查三棱锥体积的计算,在计算三棱锥的体积时,充分利用题中的线面垂直关系和平面与平面垂直的关系,寻找合适的底面和高来进行计算,考查计算能力与推理能力,属于中等题.21、(1)(2)或【解析】

(1)首先确定直线的斜率,从而得到直线的方程;因为点是直线与的交点,联立两条直线可求得点坐标;(2)设,利用中点坐标公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论