2023-2024学年湖南省永州市东安县一中高一下数学期末监测试题含解析_第1页
2023-2024学年湖南省永州市东安县一中高一下数学期末监测试题含解析_第2页
2023-2024学年湖南省永州市东安县一中高一下数学期末监测试题含解析_第3页
2023-2024学年湖南省永州市东安县一中高一下数学期末监测试题含解析_第4页
2023-2024学年湖南省永州市东安县一中高一下数学期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖南省永州市东安县一中高一下数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元2.已知,则比多了几项()A.1 B. C. D.3.已知角α的终边上有一点P(sin,cos),则tanα=()A. B. C. D.4.中国数学家刘微在《九章算术注》中提出“割圆”之说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣.”意思是“圆内接正多边形的边数无限增加的时候,它的周长的极限是圆的周长,它的面积的极限是圆的面积”.如图,若在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为()A. B. C. D.5.已知向量,则()A.12 B. C. D.86.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④7.为了得到函数的图像,可以将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位8.已知向量,,若,则锐角α为()A.45° B.60° C.75° D.30°9.已知平面向量,,且,则=A. B. C. D.10.下列函数中,在区间上为减函数的是A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数a,b满足2a+b=1,则1a12.的值为__________.13.如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数的中位数为,乙加工零件个数的平均数为,则______.14.若扇形的周长是,圆心角是度,则扇形的面积(单位)是__________.15.在等差数列中,,,则的值为_______.16.如图所示,E,F分别是边长为1的正方形的边BC,CD的中点,将其沿AE,AF,EF折起使得B,D,C三点重合.则所围成的三棱锥的体积为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,已知,其中角所对的边分别为.求(1)求角的大小;(2)若,的面积为,求的值.18.在锐角中,角,,所对的边分别为,,.已知,.(1)求的值;(2)若,求的面积.19.已知等差数列的首项为,公差为,前n项和为,且满足,.(1)证明;(2)若,,当且仅当时,取得最小值,求首项的取值范围.20.如图所示,是一个矩形花坛,其中米,米.现将矩形花坛扩建成一个更大的矩形花坛,要求:在上,在上,对角线过点,且矩形的面积小于150平方米.(1)设长为米,矩形的面积为平方米,试用解析式将表示成的函数,并确定函数的定义域;(2)当的长度是多少时,矩形的面积最小?并求最小面积.21.已知函数(,)为奇函数,且相邻两对称轴间的距离为.(1)当时,求的单调递减区间;(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.2、D【解析】

由写出,比较两个等式得多了几项.【详解】由题意,则,那么:,又比多了项.故选:D.【点睛】本题考查对函数的理解和带值计算问题,属于基础题.3、A【解析】

由题意利用任意角的三角函数的定义,求得tanα的值.【详解】解:∵角α的终边上有一点P(sin,cos),∴x=sin,y=cos,∴则tanα,故选A.【点睛】本题主要考查任意角的三角函数的定义,属于基础题.4、C【解析】

设出圆的半径,表示出圆的面积和圆内接正六边形的面积,即可由几何概型概率计算公式得解.【详解】设圆的半径为则圆的面积为圆内接正六边形的面积为由几何概型概率可知,在圆内任取一点,则此点取自其内接正六边形的边界及其内部的概率为故选:C【点睛】本题考查了圆的面积及圆内接正六边形的面积求法,几何概型概率的计算公式,属于基础题.5、C【解析】

根据向量的坐标表示求出,即可得到模长.【详解】由题,,所以.故选:C【点睛】此题考查向量的数乘运算和减法运算的坐标表示,并求向量的模长,关键在于熟记公式,准确求解.6、A【解析】

根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【点睛】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.7、D【解析】

根据三角函数的图象平移的原则,即左加右减,即可得答案.【详解】由,可以将函数图象向左平移个长度单位即可,故选:D.【点睛】本题考查三角函数的平移变换,求解时注意平移变换是针对自变量而言的,同时要注意是由谁变换到谁.8、D【解析】

根据向量的平行的坐标表示,列出等式,即可求出.【详解】因为,所以,又为锐角,因此,即,故选D.【点睛】本题主要考查向量平行的坐标表示.9、B【解析】

根据向量平行求出x的值,结合向量模长的坐标公式进行求解即可.【详解】且,则故故选B.【点睛】本题考查向量模长的计算,根据向量平行的坐标公式求出x的值是解决本题的关键.10、D【解析】试题分析:在区间上为增函数;在区间上先增后减;在区间上为增函数;在区间上为减函数,选D.考点:函数增减性二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】

利用“乘1法”和基本不等式即可得出.【详解】解:∵正实数a,b满足2a+b=1,∴1a+12b=(2a+b∴1a+故答案为:9【点睛】本题考查了“乘1法”和基本不等式的应用,属于基础题.12、【解析】

直接利用诱导公式化简求值.【详解】,故答案为:.【点睛】本题考查诱导公式的应用,属于基础题.13、44.5【解析】

由茎叶图直接可以求出甲的中位数和乙的平均数,求和即可.【详解】由茎叶图知,甲加工零件个数的中位数为,乙加工零件个数的平均数为,则.【点睛】本题主要考查利用茎叶图求中位数和平均数.14、16【解析】

根据已知条件可计算出扇形的半径,然后根据面积公式即可计算出扇形的面积.【详解】设扇形的半径为,圆心角弧度数为,所以即,所以,所以.故答案为:.【点睛】本题考查角度与弧度的转化以及扇形的弧长和面积公式,难度较易.扇形的弧长公式:,扇形的面积公式:.15、.【解析】

设等差数列的公差为,根据题中条件建立、的方程组,求出、的值,即可求出的值.【详解】设等差数列的公差为,所以,解得,因此,,故答案为:.【点睛】本题考查等差数列的项的计算,常利用首项和公差建立方程组,结合通项公式以及求和公式进行计算,考查方程思想,属于基础题.16、【解析】

根据折叠后不变的垂直关系,结合线面垂直判定定理可得到为三棱锥的高,由此可根据三棱锥体积公式求得结果.【详解】设点重合于点,如下图所示:,,又平面,平面,即为三棱锥的高故答案为:【点睛】本题考查立体几何折叠问题中的三棱锥体积的求解问题,处理折叠问题的关键是能够明确折叠后的不变量,即不变的垂直关系和长度关系.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)1.【解析】试题分析:(1)利用正弦定理角化边,结合三角函数的性质可得;(2)由△ABC的面积可得,由余弦定理可得,结合正弦定理可得:的值是1.试题解析:(1)由正弦定理,得,∵,∴.即,而∴,则(2)由,得,由及余弦定理得,即,所以.18、(1)2;(2)3.【解析】

(1)利用正弦定理可得,消元后可得关于的三角方程,从该方程可得的值.(2)利用同角的三角函数的基本关系式结合(1)中的结果可得,再根据题设条件得到后再利用正弦定理可求的值,从而得到所求的面积.【详解】(1)在由正弦定理得,①,因为,所以,又因为,所以,整理得到,故.(2)在锐角中,因为,所以,将代入①得.在由正弦定理得,所以.【点睛】在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.另外,三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道两角及一边,用正弦定理.另外,如果知道两个角的三角函数值,则必定可以求第三角的三角函数值,此时涉及到的公式有同角的三角函数的基本关系式和两角和差的三角公式、倍角公式等.19、(1)证明见解析;(2)【解析】

(1)根据等差数列的前n项和公式,变形可证明为等差数列.结合条件,,可得,进而表示出.由为等差数列,表示出,化简变形后结合不等式性质即可证明.(2)将三角函数式分组,提公因式后结合同角三角函数关系式化简.再由平方差公式及正弦的和角与差角公式合并.根据条件等式,结合等差数列性质,即可求得.由,即可确定.当且仅当时,取得最小值,可得不等式组,即可得首项的取值范围.【详解】(1)证明:等差数列的前n项和为,则所以,,故为等差数列,因为,,所以,解得,因为,得故,从而.(2)而.由条件又由等差数列性质知:所以,因为,所以,那么.等差数列,当且仅当时,取得最小值.,所以.【点睛】本题考查了等差数列前n项和公式的应用,等差数列通项公式定义及变形式应用.三角函数式变形,正弦和角与差角公式的应用,不等式组的解法,综合性强,属于难题.20、(1),;(2),.【解析】

(1)由可得,,∴.由,且,解得,∴函数的定义域为.(2)令,则,,当且仅当时,取最小值,故当的长度为米时,矩形花坛的面积最小,最小面积为96平方米.考点:1.分式不等式;2.均值不等式.21、(1),](2)值域为[,].【解析】

(1)利用三角恒等变换化简的解析式,根据条件,可求出周期和,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论