版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市宜丰县二中2024年高一下数学期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列an的前4项为:l,-12,13,A.an=C.an=2.已知在等差数列中,的等差中项为,的等差中项为,则数列的通项公式()A. B.-1 C.+1 D.-33.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等4.已知三棱柱的底面为直角三角形,侧棱长为2,体积为1,若此三棱柱的顶点均在同一球面上,则该球半径的最小值为()A.1 B.2 C. D.5.已知数列是公差不为零的等差数列,是等比数列,,,则下列说法正确的是()A. B.C. D.与的大小不确定6.将八进制数化成十进制数,其结果为()A. B. C. D.7.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10记为数列,将可被5整除的三角形数,按从小到大的顺序组成一个新数列,可以推测:()A.1225 B.1275 C.2017 D.20188.执行如图所示的程序框图,输出的s值为A. B.C. D.9.若角的终边经过点,则()A. B. C. D.10.方程的解所在区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列中,其前n项和,则的通项公式为______________..12.已知圆锥底面半径为1,高为,则该圆锥的侧面积为_____.13.已知直线过点,,则直线的倾斜角为______.14.设数列()是等差数列,若和是方程的两根,则数列的前2019项的和________15.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.16.数列的前项和为,已知,且对任意正整数,都有,若恒成立,则实数的最小值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2019年4月20日,福建省人民政府公布了“3+1+2”新高考方案,方案中“2”指的是在思想政治、地理、化学、生物4门中选择2门.“2”中记入高考总分的单科成绩是由原始分转化得到的等级分,学科高考原始分在全省的排名越靠前,等级分越高小明同学是2018级的高一学生.已确定了必选地理且不选政治,为确定另选一科,小明收集并整理了化学与生物近10大联考的成绩百分比排名数据x(如x=19的含义是指在该次考试中,成绩高于小明的考生占参加该次考试的考生数的19%)绘制茎叶图如下.(1)分别计算化学、生物两个学科10次联考的百分比排名的平均数;中位数;(2)根据已学的统计知识,并结合上面的数据,帮助小明作出选择.并说明理由.18.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值,并分别写出相应的的值.19.从半径为1的半圆出发,以此向内、向外连续作半圆,且后一个半圆的直径为前一个半圆的半径,如此下去,可得到无数个半圆.(1)求出所有这些半圆围城的封闭图形的周长;(2)求出所有这些半圆围城的封闭图形的面积.20.在锐角中角,,的对边分别是,,,且.(1)求角的大小;(2)若,求面积的最大值.21.在平面直角坐标系中,已知点,,.(Ⅰ)求的坐标及;(Ⅱ)当实数为何值时,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
分母与项数一样,分子都是1,正负号相间出现,依此可得通项公式【详解】正负相间用(-1)n-1表示,∴a故选D.【点睛】本题考查数列的通项公式,属于基础题,关键是寻找规律,寻找与项数有关的规律.2、D【解析】试题分析:由于数列是等差数列,所以的等差中项是,故有,又有的等差中项是,所以,从而等差数列的公差,因此其通项公式为,故选D.考点:等差数列.3、D【解析】
首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【点睛】本题考查了椭圆的几何性质,属于基础题型.4、D【解析】
先证明棱柱为直棱柱,再求出棱柱外接球的半径,利用基本不等式求出其最小值.【详解】∵三棱柱内接于球,∴棱柱各侧面均为平行四边形且内接于圆,所以棱柱的侧棱都垂直底面,所以该三棱柱为直三棱柱.设底面三角形的两条直角边长为,,∵三棱柱的高为2,体积是1,∴,即,将直三棱柱补成一个长方体,则直三棱柱与长方体有同一个外接球,所以球的半径为.故选D【点睛】本题主要考查几何体外接球的半径的计算和基本不等式求最值,意在考查学生对这些知识的理解掌握水平,属于基础题.5、A【解析】
设等比数列的公比为,结合题中条件得出且,将、、、用与表示,利用因式分解思想以及基本不等式可得出与的不等关系,并结合等差数列下标和性质可得出与的大小关系.【详解】设等比数列的公比为,由于等差数列是公差不为零,则,从而,且,得,,,即,另一方面,由等差数列的性质可得,因此,,故选:A.【点睛】本题考查等差数列和等比数列性质的应用,解题的关键在于将等比中的项利用首项和公比表示,并进行因式分解,考查分析问题和解决问题的能力,属于中等题.6、B【解析】
利用进制数化为十进制数的计算公式,,从而得解.【详解】由题意,,故选.【点睛】本题主要考查八进制数与十进制数之间的转化,熟练掌握进制数与十进制数之间的转化计算公式是解题的关键.7、A【解析】
通过寻找规律以及数列求和,可得,然后计算,可得结果.【详解】根据题意可知:则由…可得所以故选:A【点睛】本题考查不完全归纳法的应用,本题难点在于找到,属难题,8、B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.9、B【解析】
根据任意角的三角函数的定义,可以直接求到本题答案.【详解】因为点在角的终边上,所以.故选:B【点睛】本题主要考查利用任意角的三角函数的定义求值.10、D【解析】
令,则,所以零点在区间.方程的解所在区间是,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用递推关系,当时,,当时,,即可求出.【详解】由题知:当时,.当时,.检验当时,,所以.故答案为:【点睛】本题主要考查根据数列的前项和求数列的通项公式,体现了分类讨论的思想,属于简单题.12、【解析】
由已知求得母线长,代入圆锥侧面积公式求解.【详解】由已知可得r=1,h=,则圆锥的母线长l=,∴圆锥的侧面积S=πrl=2π.故答案为:2π.【点睛】本题考查圆锥侧面积的求法,侧面积公式S=πrl.13、【解析】
根据两点求斜率的公式求得直线的斜率,然后求得直线的倾斜角.【详解】依题意,故直线的倾斜角为.【点睛】本小题主要考查两点求直线斜率的公式,考查直线斜率和倾斜角的对应关系,属于基础题.14、2019【解析】
根据二次方程根与系数的关系得出,再利用等差数列下标和的性质得到,然后利用等差数列求和公式可得出答案.【详解】由二次方程根与系数的关系可得,由等差数列的性质得出,因此,等差数列的前项的和为,故答案为.【点睛】本题考查等差数列的性质与等差数列求和公式的应用,涉及二次方程根与系数的关系,解题的关键在于等差数列性质的应用,属于中等题.15、【解析】以A,B,C为圆心,以1为半径作圆,与△ABC交出三个扇形,当P落在其内时符合要求,∴P==.16、【解析】令,可得是首项为,公比为的等比数列,所以,,实数的最小值为,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)化学平均数30.2;中位数26;生物平均数29.6;中位数31;(2)见解析【解析】
(1)直接利用平均数的公式和中位数的定义计算化学、生物两个学科10次联考的百分比排名的平均数和中位数;(2)从平均数或中位数的角度出发帮助小明选择.【详解】解:(1)化学学科全市百分比排名的平均数,化学学科联考百分比排名的中位数为.生物学科联考百分比排名的平均数,生物学科联考百分比排名的中位数为.(2)从平均数来看,小明的生物学科比化学学科百分比排名靠前,应选生物.或者:从中位数来看,小明的化学学科比生物学科百分比排名靠前,应选化学.【点睛】本题主要考查平均数的计算和中位数的计算,考查平均数和中位数的意义,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)(2)见解析【解析】试题分析:(1)利用和角公式及降次公式对f(x)进行化简,得到f(x)=,代入周期公式即可;(2)由x的范围求出ωx+φ的范围,结合正弦函数单调性得出最值和相应的x.试题解析:(1),,,,,所以的最小正周期为.(2)∵,∴,当,即时,;当,即时,.点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.19、(1)(2)【解析】
(1)由第n个半圆的周长得,再利用无穷等比数列求和即可(2)由第n个半圆的面积得,再利用无穷等比数列求和即可【详解】(1)由题意知,圆的半径满足数列,设第n个半圆的周长为,所以,则所有这些半圆围成的封闭图形的周长.(2)题意知,设第n个半圆的面积为,则,所以所有这些半圆围成的封闭图形的面积将为.【点睛】本题考查无穷等比数列的和,注意圆的半径为等比数列,是周长及面积的考查,是基础题20、(1)(2)【解析】
(1)由正弦定理可得,结合,可求出与;(2)由余弦定理可得,结合基本不等式可得,即可求出,从而可求出的最大值.【详解】解:(1)因为,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 昆明城市学院《模拟电路设计含实验双语》2023-2024学年第一学期期末试卷
- 江苏联合职业技术学院《小学数学教学设计》2023-2024学年第一学期期末试卷
- 吉林工程技术师范学院《海洋油气工程综合课程设计》2023-2024学年第一学期期末试卷
- 湖南农业大学东方科技学院《人工智能原理与技术》2023-2024学年第一学期期末试卷
- 【物理】《滑轮》(教学设计)-2024-2025学年人教版(2024)初中物理八年级下册
- 重庆文理学院《西方文论专题》2023-2024学年第一学期期末试卷
- 郑州财税金融职业学院《数字出版物创作实训》2023-2024学年第一学期期末试卷
- 浙江经贸职业技术学院《MySQL数据库应用》2023-2024学年第一学期期末试卷
- 董事会议事规则
- 浙江安防职业技术学院《婴幼儿语言发展与教育》2023-2024学年第一学期期末试卷
- 《国有控股上市公司高管薪酬的管控研究》
- 餐饮业环境保护管理方案
- 食品安全分享
- 矿山机械设备安全管理制度
- 计算机等级考试二级WPS Office高级应用与设计试题及答案指导(2025年)
- 造价框架协议合同范例
- 糖尿病肢端坏疽
- 《创伤失血性休克中国急诊专家共识(2023)》解读课件
- 小学六年级数学100道题解分数方程
- YY 0838-2021 微波热凝设备
- 病原细菌的分离培养
评论
0/150
提交评论