2023-2024学年云南省玉溪市第二中学数学高一下期末综合测试试题含解析_第1页
2023-2024学年云南省玉溪市第二中学数学高一下期末综合测试试题含解析_第2页
2023-2024学年云南省玉溪市第二中学数学高一下期末综合测试试题含解析_第3页
2023-2024学年云南省玉溪市第二中学数学高一下期末综合测试试题含解析_第4页
2023-2024学年云南省玉溪市第二中学数学高一下期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年云南省玉溪市第二中学数学高一下期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若扇形的面积为、半径为1,则扇形的圆心角为()A. B. C. D.2.在中,、、分别是角、、的对边,若,则的形状是()A.等腰三角形 B.钝角三角形 C.直角三角形 D.锐角三角形3.如图是一个边长为3的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,据此可估计黑色部分的面积为()A.4 B.5 C.8 D.94.对于复数,定义映射.若复数在映射作用下对应复数,则复数在复平面内对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限5.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.6.中,,则()A. B. C.或 D.07.已知点,,则与向量方向相同的单位向量为()A. B. C. D.8.如下图是一个正方体的平面展开图,在这个正方体中①②与成角③与为异面直线④以上四个命题中,正确的序号是()A.①②③ B.②④ C.③④ D.②③④9.设复数(是虚数单位),则在复平面内,复数对应的点的坐标为()A. B. C. D.10.用分层抽样的方法从10盆红花和5盆蓝花中选出3盆,则所选红花和蓝花的盆数分别为A.2,1 B.1,2 C.0,3 D.3,0二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前项和为,,,则__________.12.对任意实数,不等式恒成立,则实数的取值范围是____.13.若6是-2和k的等比中项,则______.14.函数的最大值为______.15.按照如图所示的程序框图,若输入的x值依次为,0,1,运行后,输出的y值依次为,,,则________.16.等差数列中,公差.则与的等差中项是_____(用数字作答)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆的半径是2,圆心在直线上,且圆与直线相切.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.18.某校团委会组织某班以小组为单位利用周末时间进行一次社会实践活动,每个小组有5名同学,在活动结束后,学校团委会对该班的所有同学进行了测试,该班的A,B两个小组所有同学得分(百分制)的茎叶图如图所示,其中B组一同学的分数已被污损,但知道B组学生的平均分比A组同学的平均分高一分.(1)若在B组学生中随机挑选1人,求其得分超过86分的概率;(2)现从A、B两组学生中分别随机抽取1名同学,设其分数分别为m、n,求的概率.19.为了解某城市居民的月平均用电量情况,随机抽查了该城市100户居民的月平均用电量(单位:度),得到频率分布直方图(如图所示).数据的分组依次为、、、、、、.(1)求频率分布直方图中的值;(2)求该城市所有居民月平均用电量的众数和中位数的估计值;(3)在月平均用电量为的四组用户中,采用分层抽样的方法抽取户居民,则应从月用电量在居民中抽取多少户?20.已知圆的方程为,直线l的方程为,点P在直线l上,过点P作圆的切线PA,PB,切点为A,B.(1)若,求点P的坐标;(2)求证:经过A,P,三点的圆必经过异于的某个定点,并求该定点的坐标.21.在平面直角坐标系中,已知点,,.(Ⅰ)求的坐标及;(Ⅱ)当实数为何值时,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】设扇形的圆心角为α,则∵扇形的面积为,半径为1,

∴故选B2、A【解析】

由正弦定理和,可得,在利用三角恒等变换的公式,化简得,即可求解.【详解】在中,由正弦定理,由,可得,又由,则,即,即,解得,所以为等腰三角形,故选A.【点睛】本题主要考查了正弦定理的应用,以及三角形形状的判定,其中解答中熟练应用正弦定理的边角互化,合理利用三角恒等变换的公式化简是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解析】

由几何概型中的随机模拟试验可得:,将正方形面积代入运算即可.【详解】由题意在正方形区域内随机投掷1089个点,其中落入白色部分的有484个点,则其中落入黑色部分的有605个点,由随机模拟试验可得:,又,可得,故选B.【点睛】本题主要考查几何概型概率公式以及模拟实验的基本应用,属于简单题,求不规则图形的面积的主要方法就是利用模拟实验,列出未知面积与已知面积之间的方程求解.4、A【解析】,对应点,在第四象限.5、B【解析】

根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【点睛】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.6、D【解析】

根据正弦定理把角化为边,可得,然后根据余弦定理,可得,最后使用余弦定理,可得结果.【详解】由,所以,即由,又所以,则故,又故选:D【点睛】本题考查正弦定理、余弦定理的应用,属基础题.7、A【解析】

由题得,设与向量方向相同的单位向量为,其中,利用列方程即可得解.【详解】由题可得:,设与向量方向相同的单位向量为,其中,则,解得:或(舍去)所以与向量方向相同的单位向量为故选A【点睛】本题主要考查了单位向量的概念及方程思想,还考查了平面向量共线定理的应用,考查计算能力,属于较易题.8、D【解析】由已知中正方体的平面展开图,得到正方体的直观图如上图所示:

由正方体的几何特征可得:①不平行,不正确;

②AN∥BM,所以,CN与BM所成的角就是∠ANC=60°角,正确;③与不平行、不相交,故异面直线与为异面直线,正确;

④易证,故,正确;故选D.9、A【解析】,所以复数对应的点为,故选A.10、A【解析】

利用分层抽样的性质直接求解.【详解】解:用分层抽样的方法从10盆红花和5盆蓝花中选出3盆,则所选红花的盆数为:,所选蓝花的盆数为:.故选:A.【点睛】本题考查所选红花和蓝花的盆数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先利用时,求出的值,再令,由得出,两式相减可求出数列的通项公式,再将的表达式代入,可得出.【详解】当时,则有,;当时,由得出,上述两式相减得,,得且,所以,数列是以为首项,以为公比的等比数列,则,,那么,因此,,故答案为.【点睛】本题考查等比数列前项和与通项之间的关系,同时也考查了等比数列求和,一般在涉及与的递推关系求通项时,常用作差法来求解,考查计算能力,属于中等题.12、【解析】

分别在和两种情况下进行讨论,当时,根据二次函数图像可得不等式组,从而求得结果.【详解】①当,即时,不等式为:,恒成立,则满足题意②当,即时,不等式恒成立则需:解得:综上所述:本题正确结果:【点睛】本题考查不等式恒成立问题的求解,易错点是忽略不等式是否为一元二次不等式,造成丢根;处理一元二次不等式恒成立问题的关键是结合二次函数图象来得到不等关系,属于常考题型.13、-18【解析】

根据等比中项的性质,列出等式可求得结果.【详解】由等比中项的性质可得,,得.故答案为:-18【点睛】本题主要考查等比中项的性质,属于基础题.14、【解析】

设,,,则,,可得,再根据正弦函数的定义域和值域,求得函数的最值.【详解】解:函数,设,,则,,,,故当,即时,函数,故故答案为:;【点睛】本题主要考查求函数的值域,正弦函数的定义域和值域,体现了转化的数学思想,属于基础题.15、5【解析】

根据程序框图依次计算出、、后即可得解.【详解】由程序框图可知,;,;,.所以.故答案为:.【点睛】本题考查了程序框图的应用,属于基础题.16、5【解析】

根据等差中项的性质,以及的值,求出的值即是所求.【详解】根据等差中项的性质可知,的等差中项是,故.【点睛】本小题主要考查等差中项的性质,考查等差数列基本量的计算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)或.【解析】

(1)利用圆心在直线上设圆心坐标,利用相切列方程即可得解;(2)利用最大值为7确定圆,设点的坐标,找到到圆上点的最大距离列方程得解.【详解】解:(1)设圆心的坐标为,因为圆与直线相切,所以,即,解得或,故圆的方程为:,或;(2)由最大值等于可知,若圆的方程为,则的最小值为,故不故符合题意;所以圆的方程为:,设,则,的最大值为:,得,解得或.故点的坐标为或.【点睛】此题考查了圆方程的求法,点到圆上点的距离最值等,属于中档题.18、(1)(2)【解析】

(1)求出A组学生的平均分可得B组学生的平均分,设被污损的分数为X,列方程得X,从而得到B组学生的分数,其中有3人分数超过86分,由此能求出B组学生中随机挑选1人,其得分超过86分概率.(2)利用列举法写出在A、B两组学生中随机抽取1名同学,其分数组成的所有基本事件(m,n),利用古典概型求出|m﹣n|≥8的概率.【详解】(1)A组学生的平均分为,所以B组学生的平均分为86分设被污损的分数为,则,解得所以B组学生的分数为91、93、83、88、75,其中有3人分数超过86分在B组学生中随机挑选1人,其得分超过86分概率为.(2)A组学生的分数分别是94、80、86、88、77,B组学生的分数为91、93、83、88、75,在A、B两组学生中随机抽取1名同学,其分数组成的基本事件(m,n),有(94,91),(94,93),(94,83),(94,88),(94,75),(80,91),(80,93),(80,83),(80,88),(80,75),(86,91),(86,93),(86,83),(86,88),(86,75),(88,91),(88,93),(88,83),(88,88),(88,75),(77,91),(77,93),(77,83),(77,88),(77,75),共25个随机各抽取1名同学的分数满足的基本事件有(94,83),(94,75),(80,91),(80,93),(80,88),(86,75),(88,75),(77,91),(77,93),(77,88),共10个∴的概率为.【点睛】本题考查概率的求法,考查古典概型、列举法、茎叶图等基础知识,考查了推理能力与计算能力,是基础题.19、(1);(2)众数为度,中位数为度;(3)户.【解析】

(1)利用频率分布直方图中所有矩形面积之和为可求得的值;(2)利用频率分布直方图中最高矩形底边的中点值为众数,可得出该城市所有居民月平均用电量的众数,利用中位数左边的矩形面积之和为可求得该城市所有居民月平均用电量的中位数;(3)计算出月用电量在的用户在月平均用电量为的用户中所占的比例,乘以可得出结果.【详解】(1)因为,所以;(2)月平均用电量众数的估计值为度,,故中位数,所以,,解得,故月平均用电量中位数的估计值为度;(3)月均用电量在、、、的用户分别为户、户、户、户,其中,月均用电量为的用户在月平均用电量为的用户中所占的比例为,所以在月均用电量为的用户中应抽取(户).【点睛】本题考查利用频率分布直方图求参数、中位数、众数,同时也考查了利用分层抽样求样本容量,考查计算能力,属于基础题.20、(1)和;(2)和【解析】

(1)设,连接,分析易得,即有,解得的值,即可得到答案.(2)根据题意,分析可得:过A,P,三点的圆为以为直径的圆,设的坐标为,用表示过A,P,三点的圆为,结合直线与圆的位置关系,分析可得答案.【详解】(1)根据题意,点P在直线l上,设,连接,因为圆的方程为,所以圆心,半径,因为过点P作圆的切线PA,PB,切点为A,B;则有,且,易得,又由,即,则,即有,解得或,即的坐标为和.(2)根据题意,是圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论