2024届上海市鲁迅中学高一下数学期末考试模拟试题含解析_第1页
2024届上海市鲁迅中学高一下数学期末考试模拟试题含解析_第2页
2024届上海市鲁迅中学高一下数学期末考试模拟试题含解析_第3页
2024届上海市鲁迅中学高一下数学期末考试模拟试题含解析_第4页
2024届上海市鲁迅中学高一下数学期末考试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市鲁迅中学高一下数学期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,且,则的值为()A.1 B.3 C.1或3 D.42.已知,则三个数、、由小到大的顺序是()A. B.C. D.3.已知向量,,若,则()A. B. C. D.4.已知点和点,是直线上的一点,则的最小值是()A. B. C. D.5.已知关于的不等式的解集为,则的值为()A.4 B.5 C.7 D.96.光线自点M(2,3)射到N(1,0)后被x轴反射,则反射光线所在的直线方程为()A. B.C. D.7.中国古代数学名著《算法统宗》中有这样一个问题:“三百七十里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行数里,请公仔细算相还”.其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,请问从第几天开始,走的路程少于30里()A.3 B.4 C.5 D.68.《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.2.)A.2.6天 B.2.2天 C.2.4天 D.2.8天9.已知函数fxA.fx的最小正周期为π,最大值为B.fx的最小正周期为π,最大值为C.fx的最小正周期为2πD.fx的最小正周期为2π10.已知实数满足,那么的最小值为(

)A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.终边在轴上的角的集合是_____________________.12.数列满足:,,则______.13.已知数列的前4项依次为,,,,试写出数列的一个通项公式______.14.设当时,函数取得最大值,则______.15.已知、的取值如表所示:01342.24.34.86.7从散点图分析,与线性相关,且,则______.16.在中,,且,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知分别为内角的对边试从下列①②条件中任选一个作为已知条件并完成下列(1)(2)两问的解答①;②.(1)求角(2)若,,求的面积.18.已知等差数列的前项的和为,,.(1)求数列的通项公式;(2)设,记数列的前项和为,求.19.设数列的前项和为,满足,且,数列满足,对任意的,且成等比数列,其中.(1)求数列的通项公式(2)记,证明:当且时,20.在ΔABC中,角A,B,C,的对边分别是a,b,c,a-bsinA+sin(1)若b=6,求sinA(2)若D、E在线段BC上,且BD=DE=EC,AE=2321.△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

先求出,再利用向量垂直的坐标表示得到关于的方程,从而求出.【详解】因为,所以,因为,则,解得所以答案选B.【点睛】本题主要考查了平面向量的坐标运算,以及向量垂直的坐标表示,属于基础题.2、C【解析】

比较三个数、、与的大小关系,再利用指数函数的单调性可得出、的大小,可得出这三个数的大小关系.【详解】,,,,且,函数为减函数,所以,,即,,因此,,故选C.【点睛】本题考查指数幂的大小关系,常用的方法有如下几种:(1)底数相同,指数不同,利用同底数的指数函数的单调性来比较大小;(2)指数相同,底数不同,利用同指数的幂函数的单调性来比较大小;(3)底数和指数都不相同时,可以利用中间值法来比较大小.3、B【解析】

∵,∴.∴,即,∴,,故选B.【考点定位】向量的坐标运算4、D【解析】

求出A关于直线l:的对称点为C,则BC即为所求【详解】如下图所示:点,关于直线l:的对称点为C(0,2),连接BC,此时的最小值为故选D.【点睛】本题考查的知识点是两点间距离公式的应用,难度不大,属于中档题.5、D【解析】

将原不等式化简后,根据不等式的解集列方程组,求得的值,进而求得的值.【详解】由得,依题意上述不等式的解集为,故,解得(舍去),故.故选:D.【点睛】本小题主要考查类似:已知一元二次不等式解集求参数,考查函数与方程的思想,属于基础题.6、B【解析】试题分析:点关于轴的对称点,则反射光线即在直线上,由,∴,故选B.考点:直线方程的几种形式.7、B【解析】

由题意知,本题考查等比数列问题,此人每天的步数构成公比为的等比数列,由求和公式可得首项,进而求得答案.【详解】设第一天的步数为,依题意知此人每天的步数构成公比为的等比数列,所以,解得,由,,解得,故选B.【点睛】本题主要考查学生的数学抽象和数学建模能力.8、A【解析】

设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.利用等比数列的前n项和公式及其对数的运算性质即可得出..【详解】设蒲的长度组成等比数列{an},其a1=3,公比为,其前n项和为An.莞的长度组成等比数列{bn},其b1=1,公比为2,其前n项和为Bn.则An,Bn,由题意可得:,化为:2n7,解得2n=3,2n=1(舍去).∴n12.3.∴估计2.3日蒲、莞长度相等,故选:A.【点睛】本题考查了等比数列的通项公式与求和公式在实际中的应用,考查了推理能力与计算能力,属于中档题.9、B【解析】

首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为fx【详解】根据题意有fx所以函数fx的最小正周期为T=且最大值为fx【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.10、A【解析】

表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【点睛】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由于终边在y轴的非负半轴上的角的集合为而终边在y轴的非正半轴上的角的集合为,终边在轴上的角的集合是,所以,故答案为.12、【解析】

可通过赋值法依次进行推导,找出数列的周期,进而求解【详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【点睛】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题13、【解析】

首先写出分子的通项公式,再写出分母的通项公式,合并即可.【详解】,,,,的通项公式为,,,,,的通项公式为,正负交替的通项公式为,所以数列的通项公式.故答案为:【点睛】本题主要考查根据数列中的项求出通项公式,找到数列中每一项的规律为解题的关键,属于简单题.14、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.15、【解析】

根据数据表求解出,代入回归直线,求得的值.【详解】根据表中数据得:,又由回归方程知回归方程的斜率为截距本题正确结果:【点睛】本题考查利用回归直线求实际数据,关键在于明确回归直线恒过,从而可构造出关于的方程.16、【解析】

∵在△ABC中,∠ABC=60°,且AB=5,AC=7,

∴由余弦定理,可得:,

∴整理可得:,解得:BC=8或−3(舍去).考点:1、正弦定理及余弦定理;2、三角形内角和定理及两角和的余弦公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)选择①,;选择②,(2)【解析】

(1)选择①,利用正弦定理余弦定理化简即得C;选择②,利用正弦定理化简即得C的值;(2)根据余弦定理得,再求的面积.【详解】解:(1)选择①根据正弦定理得,从而可得,根据余弦定理,解得,因为,故.选择②根据正弦定理有,即,即因为,故,从而有,故(2)根据余弦定理得,得,即,解得,又因为的面积为,故的面积为.【点睛】本题主要考查正弦定理余弦定理解三角形,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.18、(1)数列的通项公式为(2)【解析】试题分析:(1)建立方程组;(2)由(1)得:进而由裂项相消法求得.试题解析:(1)设等差数列的公差为,由题意知解得.所以数列的通项公式为(2)∴19、(1).;.(2)证明见解析.【解析】

(1)当时,由,两式相减得,用等差中项确定是等差数列再求通项公式.令,根据成等比数列,求得,从而得到(2)由(1)知根据证明的结构使用放缩法,得到,再相消法求和.【详解】(1)当时,由,得,两式相减得,当时,,所以是等差数列.又因为,所以,所以,所以..令,因为成等比数列,所以,所以,所以,又因为.,所以.(2)由(1)知,因为,所以,.同理所以所以.所以当且时,【点睛】本题主要考查了数列递推关系和等比数列的性质,放缩法证明数列不等式问题,属于难题.20、(1)32+【解析】

(1)根据正弦定理化简边角关系式,可整理出余弦定理形式,得到cosB=12;再根据正弦定理求得sinC,根据同角三角函数得到cosC;根据两角和差公式求得sinA;(2)设BD=x,在【详解】(1)∵由正弦定理得:a-b整理得:a2+∵0<B<π∴B=由正弦定理bsinB=c∵b>c∴B>C∴∴(2)设BD=x,则:BE=2x,AE=2在ΔABE中,利用余弦定理AE12x2=16+4x∴BE=2,AE=23,又AB=4,即BE∴AD=【点睛】本题考查正弦定理、余弦定理解三角形的问题,涉及到正弦定理化简边角关系式、同角三角函数求解、两角和差公式的运算,考查对于定理和公式的应用,属于常规题型.21、(Ⅰ)B=(Ⅱ)【解析】

(1)∵a=bcosC+csi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论