版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺市东洲区抚顺十中2023-2024学年数学高一下期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列中,若,则取最小值时的()A.9 B.8 C.7 D.62.如果直线l过点(2,1),且在y轴上的截距的取值范围为(﹣1,2),那么l的斜率k的取值范围是()A.(,1) B.(﹣1,1)C.(﹣∞,)∪(1,+∞) D.(﹣∞,﹣1)∪(1,+∞)3.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C4.已知为等差数列,为其前项和.若,则()A. B. C. D.5.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则()A.2 B. C.6 D.6.已知△ABC的项点坐标为A(1,4),B(﹣2,0),C(3,0),则角B的内角平分线所在直线方程为()A.x﹣y+2=0 B.xy+2=0 C.xy+2=0 D.x﹣2y+2=07.在ABC中,.则的取值范围是()A.(0,] B.[,) C.(0,] D.[,)8.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为A. B.C. D.9.已知集合A={x︱x>-2}且,则集合B可以是()A.{x︱x2>4} B.{x︱}C.{y︱} D.10.若直线与圆交于两点,关于直线对称,则实数的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列的前项和为,若数列的各项按如下规律排列:,,,,,,,,,,…,,,…,,…有如下运算和结论:①;②数列,,,,…是等比数列;③数列,,,,…的前项和为;④若存在正整数,使,,则.其中正确的结论是_____.(将你认为正确的结论序号都填上)12.已知常数θ∈(0,π2),若函数f(x)在Rf(x)=2sinπx-1≤x≤1log是________.13.在某校举行的歌手大赛中,7位评委为某同学打出的分数如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的方差为______.14.在等比数列中,,,则______________.15.抽样调查某地区名教师的年龄和学历状况,情况如下饼图:则估计该地区岁以下具有研究生学历的教师百分比为_______.16.已知,若方程的解集为,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,,角的平分线交于点,设,其中.(1)求;(2)若,求的长.18.已知余切函数.(1)请写出余切函数的奇偶性,最小正周期,单调区间;(不必证明)(2)求证:余切函数在区间上单调递减.19.已知数列的前项和为,且满足.(1)求的值;(2)证明是等比数列,并求;(3)若,数列的前项和为.20.已知函数(1)求函数的反函数;(2)解方程:.21.下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.星期星期2星期3星期4星期5星期6利润23569(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;(2)估计星期日获得的利润为多少万元.参考公式:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
是等差数列,先根据已知求出首项和公差,再表示出,由的最小值确定n。【详解】由题得,,解得,那么,当n=7时,取到最小值-49.故选:C【点睛】本题考查等差数列前n项和,是基础题。2、A【解析】
利用直线的斜率公式,求出当直线经过点时,直线经过点时的斜率,即可得到结论.【详解】设要求直线的斜率为,当直线经过点时,斜率为,当直线经过点时,斜率为,故所求直线的斜率为.故选:A.【点睛】本题主要考查直线的斜率公式,属于基础题.3、B【解析】
由集合A,B,C,求出B与C的并集,判断A与C的包含关系,以及A,B,C三者之间的关系即可.【详解】由题BA,∵A={第一象限角},B={锐角},C={小于90°的角},∴B∪C={小于90°的角}=C,即BC,则B不一定等于A∩C,A不一定是C的真子集,三集合不一定相等,故选:B.【点睛】此题考查了集合间的基本关系及运算,熟练掌握象限角,锐角,以及小于90°的角表示的意义是解本题的关键,是易错题4、D【解析】试题分析:设等差数列的公差为,由题意得,解得,所以,故答案为D.考点:1、数列的通项公式;2、数列的前项和.5、C【解析】试题分析:直线l过圆心,所以,所以切线长,选C.考点:切线长6、D【解析】
由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,继而可以求得结果.【详解】由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,又线段AC中点坐标为(2,2),则角B的内角平分线所在直线方程为y﹣2,即x﹣2y+2=1.故选:D.【点评】本题考查直线的位置关系,考查垂直的应用,由|AB|=|BC|=5转化为求直线的AC的垂直平分线是关键,属于中档题.7、C【解析】
试题分析:由于,根据正弦定理可知,故.又,则的范围为.故本题正确答案为C.考点:三角形中正余弦定理的运用.8、D【解析】
由半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,求得十二边形的面积,利用面积比的几何概型,即可求解.【详解】由题意,半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,所以该正十二边形的面积为,由几何概型的概率计算公式,可得所求概率,故选D.【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A的基本事件对应的“几何度量”,再求出总的基本事件对应的“几何度量”,然后根据求解,着重考查了分析问题和解答问题的能力.9、D【解析】
A、B={x|x>2或x<-2},
∵集合A={x|x>-2},
∴A∪B={x|x≠-2}≠A,不合题意;
B、B={x|x≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
C、B={y|y≥-2},
∵集合A={x|x>-2},
∴A∪B={x|x≥-2}=B,不合题意;
D、若B={-1,0,1,2,3},
∵集合A={x|x>-2},
∴A∪B={x|x>-2}=A,与题意相符,
故选D.10、A【解析】
由题意,得直线是线段的中垂线,则其必过圆的圆心,将圆心代入直线,即可得本题答案.【详解】解:由题意,得直线是线段的中垂线,所以直线过圆的圆心,圆的圆心为,,解得.故选:A.【点睛】本题给出直线与圆相交,且两个交点关于已知直线对称,求参数的值.着重考查了直线与圆的位置关系等知识,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①③④【解析】
根据题中所给的条件,将数列的项逐个写出,可以求得,将数列的各项求出,可以发现其为等差数列,故不是等比数列,利用求和公式求得结果,结合条件,去挖掘条件,最后得到正确的结果.【详解】对于①,前24项构成的数列是,所以,故①正确;对于②,数列是,可知其为等差数列,不是等比数列,故②不正确;对于③,由上边结论可知是以为首项,以为公比的等比数列,所以有,故③正确;对于④,由③知,即,解得,且,故④正确;故答案是①③④.【点睛】该题考查的是有关数列的性质以及对应量的运算,解题的思想是观察数列的通项公式,理解项与和的关系,认真分析,仔细求解,从而求得结果.12、15【解析】
根据f(-1【详解】∵函数f(x)在R上恒有f(-1∴f-∴函数周期为4.∵常数θ∈(0,π∴cos∴函数y=f(x)-cosθ-1在区间[-5,14]上零点,即函数y=f(x) (x∈[-5,14])与直线由f(x)=2sinπx由图可知,在一个周期内,函数y=f(x)-cos故函数y=f(x)-cosθ-1在区间故填15.【点睛】本题主要考查了函数零点的个数判断,涉及数形结合思想在解题中的运用,属于难题.13、2【解析】
去掉分数后剩余数据为22,23,24,25,26,先计算平均值,再计算方差.【详解】去掉分数后剩余数据为22,23,24,25,26平均值为:方差为:故答案为2【点睛】本题考查了方差的计算,意在考查学生的计算能力.14、1【解析】
根据已知两项求出数列的公比,然后根据等比数列的通项公式进行求解即可.【详解】∵a1=1,a5=4∴公比∴∴该等比数列的通项公式a3=11=1故答案为:1.【点睛】本题主要考查了等比数列的通项公式,一般利用基本量的思想,属于基础题.15、【解析】
根据饼状图中的岁以下本科学历人数和占比可求得岁以下教师总人数,从而可得其中的具有研究生学历的教师人数,进而得到所求的百分比.【详解】由岁以下本科学历人数和占比可知,岁以下教师总人数为:人岁以下有研究生学历的教师人数为:人岁以下有研究生学历的教师的百分比为:本题正确结果:【点睛】本题考查利用饼状图计算总体中的数据分布和频率分布的问题,属于基础题.16、【解析】
将利用辅助角公式化简,可得出的值.【详解】,其中,,因此,,故答案为.【点睛】本题考查利用辅助角公式化简计算,化简时要熟悉辅助角变形的基本步骤,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)5.【解析】
(1)根据求出和的值,利用角平分线和二倍角公式求出,即可求出;(2)根据正弦定理求出,的关系,利用向量的夹角公式求出,可得,正弦定理可得答案【详解】解:(1)由,且,,,,则;(2)由正弦定理,得,即,,又,,由上两式解得,又由,得,解得【点睛】本题考查了二倍角公式和正弦定理的灵活运用和计算能力,是中档题.18、(1)奇函数;周期为,单调递减速区间:(2)证明见解析【解析】
(1)直接利用函数的性质写出结果.(2)利用单调性的定义和三角函数关系式的变换求出结果.【详解】(1)奇函数;周期为,单调递减区间:(2)任取,,,有因为,所以,于是,,从而,.因此余切函数在区间上单调递减.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.19、(1)2,6,14;(2)(3)【解析】
(1)通过代入,可求得前3项;(2)利用已知求的方法,求解;(3)首先求得数列的通项公式,将通项分成两部分,一部分利用错位相减法求和,另一部分常数列求和.【详解】(1)当时,,解得;当时,,解得;当时,,解得.(2)当时,两式相减,,且时首项为4,公比为2的等比数列.(3)根据(2)可知,,设,设其前项和为,两式相减可得解得,数列,前项和为,数列的前项和是【点睛】本题考查了已知求的方法,利用错位相减法求和属于基础中档题型.20、(1);(2)【解析】
(1)反解,然后交换的位置,写出原函数的值域即可得到结果;(2)代入原函数与反函数的解析式,解方程即可得到答案.【详解】(1)由得,得,因为,所以,所以.(2)由得2,所以,即,解得,所以,所以原方程的解集为.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 通信基站建设设计施工合同
- 旅游行业专项资金监管条例
- 影视基地租赁合同样板
- 展览会电脑租赁服务合同
- 库位优化与成本控制
- 文化产业保函管理规范
- 2024年度监护权监护人更换合同2篇
- 舞台剧演员排练安排合同
- 2024年城市户外广告工程合同3篇
- 教育实践区车辆管理
- 2024年度餐饮店合伙人退出机制与财产分割协议2篇
- 《岁末年初重点行业领域安全生产提示》专题培训
- 灵新煤矿职业病危害告知制度范文(2篇)
- 2024年安徽省广播电视行业职业技能大赛(有线广播电视机线员)考试题库(含答案)
- 山东省济南市济阳区三校联考2024-2025学年八年级上学期12月月考语文试题
- 手术室的人文关怀
- 2025北京语言大学新编长聘人员招聘21人笔试模拟试题及答案解析
- 部编版小学五年级上册道德与法治单元检测试卷含答案(全册)
- 中国近代史纲要试题及答案(全套)
- DL∕T 5210.2-2018 电力建设施工质量验收规程 第2部分:锅炉机组
- 唐宋文学与中学语文智慧树知到期末考试答案章节答案2024年绍兴文理学院
评论
0/150
提交评论