版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市永和县打石腰乡中学高一数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设都是{x|0≤x≤1}的子集,如果b?a叫做集合{x|a≤x≤b}的长度,则集合的长度的最小值是(
)A.
B.
C.
D.参考答案:D2.下列运算结果中正确的是(
)A.
B.
C.
D.参考答案:B3.在四边形ABCD中,且,则四边形ABCD的形状一定是(
)A.正方形 B.矩形 C.菱形 D.等腰梯形参考答案:C【分析】根据向量相等可知对边平行且相等,四边形为平行四边形,根据模相等可知邻边相等,所以四边形为菱形.【详解】因为,所以,四边形是平行四边形又,所以,四边形是菱形,故选C.4.若函数f(x)、g(x)分别为R上的奇函数、偶函数,且满足f(x)-g(x)=ex,则有A.f(2)<f(3)<g(0)
B.g(0)<f(3)<f(2)C.f(2)<g(0)<f(3)
D.g(0)<f(2)<f(3)
参考答案:5.在映射,,且,则与A中的元素对应的B中的元素为(
)A、 B、
C、
D、参考答案:A6.设P(3,6),Q(5,2),R的纵坐标为9,且P、Q、R三点共线,则R点的
横坐标为
(
)A.9
B.6
C.9
D.6参考答案:D7.已知数列{an}的前n项和为Sn,若Sn=n2+n(n≥1),则数列{}的前n项和等于()A. B. C. D.参考答案:A8.已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围是()A.(﹣1,+∞) B.(﹣1,1] C.(﹣∞,1) D.[﹣1,1)参考答案:B【考点】函数的零点与方程根的关系.【分析】作函数f(x)=的图象如下,由图象可得x1+x2=﹣2,x3x4=1;1<x4≤2;从而化简x3(x1+x2)+,利用函数的单调性求取值范围.【解答】解:作函数f(x)=,的图象如下,由图可知,x1+x2=﹣2,x3x4=1;1<x4≤2;故x3(x1+x2)+=﹣+x4,其在1<x4≤2上是增函数,故﹣2+1<﹣+x4≤﹣1+2;即﹣1<﹣+x4≤1;故选B.9.已知函数定义在上的偶函数满足,当时,,则
(
)A.
B.
C.
D.参考答案:D10.若,则sin4x-cos4x的值为
(
)
A.
B.
C.
D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知指数函数y=f(x)的图象过点(2,4),若f(m)=8,则m=.参考答案:3【考点】指数函数的图象与性质.【专题】计算题;方程思想;函数的性质及应用.【分析】设函数f(x)=ax,a>0且a≠1,把点(2,4),求得a的值,可得函数的解析式,进而得到答案.【解答】解:设函数f(x)=ax,a>0且a≠1,把点(2,4),代入可得a2=4,解得a=2,∴f(x)=2x.又∵f(m)=8,∴2m=8,解得:m=3,故答案为:3【点评】本题主要考查用待定系数法求函数的解析式,求函数的值,难度不大,属于基础题.12.设是锐角,若cos(+)=,则是值为________________.参考答案:略13.已知点到经过原点的直线的距离为2,则直线的方程是_____________.参考答案:略14.参考答案:C略15.下面程序的功能是____________.参考答案:求使成立的最大正整数加1。略16.已知0<x<1.5,则函数y=4x(3﹣2x)的最大值为.参考答案:【考点】二次函数的性质.【专题】函数的性质及应用.【分析】将二次函数进行配方,根据二次函数的图象和性质进行求值即可.【解答】解:∵y=4x(3﹣2x)=﹣8x2+12x=﹣8(x﹣)2+,∴当x=时,函数取得最大值,故答案为:.【点评】本题主要考查二次函数的图象和性质,利用配方得到函数的对称轴是解决二次函数的关键.17.从中随机选取一个数为,从中随机选取一个数为,则的概率是_________________;参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.定义在上的函数满足:①对任意x,都有:;②当时,,回答下列问题.(1)证明:函数在上的图像关于原点对称;(2)判断函数在上的单调性,并说明理由.(3)证明:,。参考答案:解:(1)令,令,则在上是奇函数.………………4分(2)设,则,…………6分而,.………………7分即当时,.∴f(x)在(0,1)上单调递减.………………8分(3)………………13分略19.设函数,且.(1)求的值;(2)若令,求实数的取值范围;(3)将表示成以()为自变量的函数,并由此求函数的最大值与最小值及与之对应的的值.参考答案:解:(1)=(2)由,又(3)由令当t=时,,即.,此时当t=2时,,即.,此时略20.如图,在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.(1)求证:DE∥平面PAC;(2)求证:AB⊥PC.参考答案:【考点】直线与平面平行的判定.【分析】(1)推导出DE∥AC,由此能证明DE∥平面PAC.(2)连结PD,CD,则PD⊥AB,CD⊥AB,从而AB⊥平面PDC,由此能证明AB⊥PC.【解答】证明:(1)∵在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.∴DE∥AC,∵DE?平面PAC,AC?平面PAC,∴DE∥平面PAC.(2)连结PD,CD,∵正三棱锥P﹣ABC中,D是AB的中点,∴PD⊥AB,CD⊥AB,∵PD∩CD=D,∴AB⊥平面PDC,∵PC?平面PDC,∴AB⊥PC.21.设m∈R,函数f(x)=ex﹣m(x+1)+m2(其中e为自然对数的底数)(Ⅰ)若m=2,求函数f(x)的单调递增区间;(Ⅱ)已知实数x1,x2满足x1+x2=1,对任意的m<0,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,求x1的取值范围;(Ⅲ)若函数f(x)有一个极小值点为x0,求证f(x0)>﹣3,(参考数据ln6≈1.79)参考答案:【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可;(Ⅱ)问题转化为2(x1﹣1)m﹣(﹣)+e﹣1<0对任意m<0恒成立,令g(m)=2(x1﹣1)m﹣(﹣)+e﹣1,得到关于x1的不等式组,解出即可;(Ⅲ)求出f(x0)的解析式,记h(m)=m2﹣mlnm,m>0,根据函数的单调性求出h(m)的取值范围,从而求出f(x0)的范围,证明结论即可.【解答】解:(Ⅰ)m=2时,f(x)=ex﹣2x﹣1,f′(x)=ex﹣2,令f′(x)>0,解得:x>ln2,故函数f(x)在[ln2,+∞)递增;(Ⅱ)∵不等式f(x1)+f(0)>f(x2)+f(1)恒成立,x1+x2=1,∴2(x1﹣1)m﹣(﹣)+e﹣1<0对任意m<0恒成立,令g(m)=2(x1﹣1)m﹣(﹣)+e﹣1,当2(x1﹣1)=0时,g(m)=0<0不成立,则,解得:x1>1;(Ⅲ)由题意得f′(x)=ex﹣m,f′(x0)=0,故=m,f(x0)=﹣m(x0+1)+m2=m2﹣mlnm,m>0,记h(m)=m2﹣mlnm,m>0,h′(m)=m﹣lnm﹣1,h′′(m)=﹣,当0<m<2时,h′′(m)<0,当m>2时,h′′(m)>0,故函数h′(x)在(0,2)递减,在(2,+∞)递增,如图所示:[h′(m)]min=h′(2)=﹣ln2<0,又当m→0时,h′(m)>0,m→+∞,h′(m)>0,故函数h′(m)=0有2个根,记为m1,m2(m1<2<m2<6),(h′(6)>0),故h(m)在(0,m1)递增,在(m1,m2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黏膜白斑的临床护理
- 《政府的宗旨和原则》课件
- 《保险费率策略》课件
- 建立高效团队合作的前台策略计划
- 《数字分析》课件
- 班级心理剧的实践与反思计划
- 设计方案委托合同三篇
- 地震前兆观测仪器相关行业投资规划报告
- 《液压与气动》课件 3气动-压力控制阀
- 高档零售商场租赁合同三篇
- 中标方转让合同协议书
- 二年级上册数学教案-小小测量员 (2)-西师大版
- 人教版(2024)七年级地理上册3.2《世界的地形》精美课件
- APQC跨行业流程分类框架(PCF)V7.4版-2024年8月21日版-雷泽佳编译
- 《2023-2024中国区块链发展年度报告》
- 国家开放大学本科《理工英语3》一平台机考总题库2025珍藏版
- 六年级上册美术说课稿 -第7课《 变化多样的脸谱》桂美版(广西版)
- 人教版七年级数学上册3.4 第3课时《 球赛积分表问题》说课稿1
- 中药学总结(表格)
- 2022-2023学年广东省深圳市高一(上)期末数学试卷-解析版
- 城市绿地系统规划智慧树知到期末考试答案章节答案2024年浙江农林大学
评论
0/150
提交评论