江苏省五校2019届高三上学期12月联考数学试卷-含答案_第1页
江苏省五校2019届高三上学期12月联考数学试卷-含答案_第2页
江苏省五校2019届高三上学期12月联考数学试卷-含答案_第3页
江苏省五校2019届高三上学期12月联考数学试卷-含答案_第4页
江苏省五校2019届高三上学期12月联考数学试卷-含答案_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省五校2019届高三上学期12月联考数学试卷-Word版含答案2019届高三年级五校联考数学试题(I)卷2018.12.21注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题).注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.4.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.1.已知集合,若,则▲.2.函数的定义域为▲.3.已知复数满足(是虚数单位),则复数的模为▲.4.右图是一个算法流程图,则输出的的值是▲.5.已知函数,则▲.6.若“”是“”的充分不必要条件,则实数的取值范围为▲.7.已知函数的图象与直线相切,则实数的值为▲.8.已知函数在时取得最大值,则的值是▲.9.在平面直角坐标系中,已知角的终边经过点,将角的终边绕原点按逆时针方向旋转与角的终边重合,则的值为▲.10.已知等差数列的前项和为,若,则的取值范围是▲.11.如图,在平面直角坐标系中,椭圆的左、右顶点分别为、,右焦点为,上顶点为,线段的中点为,直线与椭圆的另一个交点为,且垂直于轴,则椭圆离心率的值为▲.12.如图,在中,a、b、c分别是角所对的边,是上的两个三等分点,是上的两个三等分点,,则的最小值为▲.19.(本小题满分16分)已知函数(是自然对数的底数).若,求函数的单调增区间;若关于的不等式恒成立,求实数的取值范围;若函数在处取得极大值,求实数的取值范围.20.(本小题满分16分)已知数列、、,对于给定的正整数,记,().若对任意的正整数满足:,且是等差数列,则称数列为“”数列.若数列的前项和为,证明:为数列;若数列为数列,且,求数列的通项公式;若数列为数列,证明:是等差数列.江苏省启东中学、前黄中学、淮阴中学等七校2019届高三12月月考数学试题数学试题(II)卷2018.12.2121.(本小题满分10分)已知矩阵的逆矩阵,设曲线在矩阵对应的变换作用下得到曲线,求曲线的方程.22.(本小题满分10分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆相交于、两点.若弦长,求实数的值.(本小题满分10分)已知点是抛物线上的一点,过点作两条直线与,分别与抛物线相交于、两点.已知点且,求证:直线恒过定点;已知点,直线所在直线方程为,且的垂心在轴上,求实数的值.(本小题满分10分)已知数列满足.,求,并猜想数列通项公式;若,用数学归纳法证明.

数学试卷(I)答案2018.12.21一、填空题:1、{1,2,3}2、3、4、55、-26、7、28、9、10、11、12、113、14、二、解答题:解(1)因为,所以,所以…………3分又因为,所以,所以或,所以或…………7分(漏1解扣2分)因为,所以,所以……………10分所以…………14分(忘记开根号扣2分)解(1)因为是定义在的奇函数,所以,所以m=1…4分当m=1时,,所以………………6分(2),所以,当且仅当x=0时,所以在单调递增…10分所以,所以………………14分(忘记定义域扣2分)解(1)………………2分设点P,则………………6分因为,所以,当时的最小值为………………7分(用结论不证明扣2分)(2)设点P,则QF:,所以点Q……………9分因为点P、Q、M三点共线,所以,所以……………11分又因为,所以或,因为,所以P………14分18.解(1)在中,由正弦定理可知:……………2分在中,……………4分……………6分(2)……………8分………………10分即……………12分由,则……………14分当时,;当时,在上单调递减,在上单调递增答:当时,取得最小值.……………16分19.解(1)当时,因为,所有时,;时,则在上单调递增。……………3分(法1:不分参,分类讨论)若时,,则在上单调递减,由与恒成立矛盾,所以不合题意;……………5分(不举反例扣1分)若时,令,则所以当时,;当时,则在单调递减,在单调递增……………7分所以的最小值为(*),又带入(*)得:,由恒成立,所以,记又,则在单调递减,又,所以……………10分所以实数的取值范围是附:(法2:分参)对恒成立,令……………5分设,,在单调递减,又……………7分当时,,即;当时,,即在上递增,在上递减综上,实数的取值范围是……………10分(3),设,则在上单调递减,当时,即,,则在单调递减与“在处取得极大值”矛盾不合题意;……………12分当时,即则由,,使得……………14分当时,,则当时,,则在单调递增,在单调递减,则在处取得极大值综上符合题意。……………16分20.解(1)当时,……………2分当时,符合上式,则则对任意的正整数满足,且是公差为4的等差数列,为数列.………4分由数列为数列,则是等差数列,且即……………6分则是常数列……………9分验证:,对任意正整数都成立……………10分附:-得:(3)由数列为数列可知:是等差数列,记公差为则又……………13分数列为常数列,则由……………16分是等差数列.注意:请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.21.(本小题满分10分)解:…………3分,则…………5分设曲线上任一点变换为则,…………7分代入曲线得曲线的方程…………10分(不设任意点变换为扣1分)22.(本小题满分10分)解:解:直线,圆,…4分由弦长…6分所以圆心C(1,-1)到直线的距离,……………10分(漏解扣2分)(本小题满分10分)解(1)由题可知直线、的斜率都存在,设,…2分同理可得则直线所在的直线方程为当时,直线所在的直线方程为综上,直线恒过定点…5分(不讨论值扣1分)(2)由可知垂心设点由得:由即………………7分将带入得:,又………………10分(忘记扣1分)(本小题满分10分)解(1),猜得………………1分证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论