浙江省湖州市龙山中学2022-2023学年高一数学文期末试卷含解析_第1页
浙江省湖州市龙山中学2022-2023学年高一数学文期末试卷含解析_第2页
浙江省湖州市龙山中学2022-2023学年高一数学文期末试卷含解析_第3页
浙江省湖州市龙山中学2022-2023学年高一数学文期末试卷含解析_第4页
浙江省湖州市龙山中学2022-2023学年高一数学文期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省湖州市龙山中学2022-2023学年高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设点M是线段BC的中点,点A在直线BC外,=16,=,则=(

)A.2

B.4

C.6

D.8参考答案:A略2.在△ABC中,已知sinC=2sinAcosB,那么△ABC一定是(

)A.等腰直角三角形

B.等腰三角形

C.直角三角形

D.等边三角形参考答案:B略3.调研考试以后,班长算出了某班40人数学成绩的平均分为M,如果把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N,那么的值为A.

B.1

C.

D.2参考答案:B4.已知,,,且,在同一坐标系中画出其中两个函数在第Ⅰ象限的图象,正确的是()

A

B

C

D参考答案:B5.已知△ABC是边长为4的等边三角形,P为平面ABC内一点,则的最小值是()A.-6 B.-3 C.-4 D.-2参考答案:A【分析】建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解.【详解】由题意,以中点为坐标原点,建立如图所示的坐标系,则,设,则,所以,所以当时,取得最小值为,故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.6.在三棱柱中,底面是正三角形,侧棱底面,点是侧面的中心,若,则直线与平面所成角的大小为(

)A.

B.

C.

D.参考答案:A由题意画出图形,取BC的中点D,连接AD与ED,因为三棱柱ABC-A1B1C1中,底面是正三角形,侧棱AA1⊥底面ABC,所以平面BCC1B1⊥平面ABC,点E是侧面BB1CC1的中心,所以ED⊥BC,AD⊥BC,所以AD⊥平面EBC,∠AED就是直线AE与平面BB1CC1所成角,∵AA1=3AB,∴,所以∠AED=30°,即直线与平面所成角。7.已知cosθ?tanθ<0,那么角θ是()A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角参考答案:C考点:象限角、轴线角.专题:计算题.分析:根据cosθ?tanθ<0和“一全正、二正弦、三正切、四余弦”来判断角θ所在的象限.解答:解:∵cosθ?tanθ<0,∴角θ是第三或第四象限角,故选C.点评:本题的考点是三角函数值得符号判断,需要利用题中三角函数的不等式和“一全正、二正弦、三正切、四余弦”对角的终边位置进行判断.8.当时,在同一坐标系中,函数与的图象是

A

B

C

D参考答案:C9.已知集合P={x|﹣4≤x≤4},Q={y|﹣2≤y≤2},则下列对应不能表示为从P到Q的函数的是()A.y=x B.y2=(x+4) C.y=x2﹣2 D.y=﹣x2参考答案:B【考点】函数的概念及其构成要素.

【专题】函数的性质及应用.【分析】根据函数的定义分别进行判断即可.【解答】解:集合P={x|﹣4≤x≤4},若y=x,则﹣2≤y≤2,满足函数的定义.若y2=(x+4),则x≠﹣4时,不满足对象的唯一性,不是函数.若y=x2﹣2,则﹣2≤y≤2,满足函数的定义.若y=﹣x2,则﹣2≤y≤0,满足函数的定义.故选:B.【点评】本题主要考查函数定义的判断,根据变量x的唯一性是解决本题的关键.10.设集合M=,则(

A.M=N

B.

C.

D.∩参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.c已知,若A、B、C能构成三角形,则m的取值范围是_______________。参考答案:略12.函数的图象中相邻两对称轴的距离是

.参考答案:

解析:

,相邻两对称轴的距离是周期的一半13.已知全集U=R,集合A={0,1,2},B={x∈Z|x2≤3},如图阴影部分所表示的集合为.参考答案:{2}【考点】Venn图表达集合的关系及运算.【专题】数形结合;综合法;集合.【分析】根据Venn图和集合之间的关系进行判断.【解答】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(?UB).B={x∈Z|x2≤3}={﹣1,0,1},则?UB={x∈Z|x≠0且x≠±1},则A∩(?UB)={2},故答案为:{2}.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.14.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.参考答案:考点:分层抽样.15.(5分)已知函数y=tan+,则函数的定义域是

.参考答案:{x|﹣4≤x≤4且x≠kπ+,k∈Z}考点: 函数的定义域及其求法.专题: 函数的性质及应用.分析: 根据三角函数的性质,结合二次根式的性质得到不等式组,解出即可.解答: 由题意得:,解得:﹣4≤x≤4且x≠kπ+,(k=﹣1,0,),故答案为:{x|﹣4≤x≤4且x≠kπ+,(k=﹣1,0)}.点评: 本题考查了三角函数的性质,考查了二次根式的性质,是一道基础题.16.已知函数,,若关于x的不等式恰有两个非负整数解,则实数a的取值范围是__________.参考答案:【分析】由题意可得f(x),g(x)的图象均过(﹣1,1),分别讨论a>0,a<0时,f(x)>g(x)的整数解情况,解不等式即可得到所求范围.【详解】由函数,可得,的图象均过,且的对称轴为,当时,对称轴大于0.由题意可得恰有0,1两个整数解,可得;当时,对称轴小于0.因为,由题意不等式恰有-3,-2两个整数解,不合题意,综上可得的范围是.故答案为:.【点睛】本题考查了二次函数的性质与图象,指数函数的图像的应用,属于中档题.17.(5分)已知函数f(x)=,若g(x)=f(x)﹣k有两个零点,则实数k的取值范围是

.参考答案:(,1)考点: 函数的零点与方程根的关系.专题: 计算题;函数的性质及应用.分析: 化简确定函数f(x)的单调性与值域,并将函数g(x)的零点个数转化为函数交点的个数.【题文】(5分)判断下列说法:①已知用二分法求方程3x+3x﹣8=0在x∈(1,2)内的近似解过程中得:f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间(1.25,1.5)②y=tanx在它的定义域内是增函数.③函数y=的最小正周期为π④函数f(x)=是奇函数⑤已知=(x,2x),=(﹣3x,2),若∠BAC是钝角,则x的取值范围是x<0或x>其中说法正确的是

.【答案】①③【解析】考点: 命题的真假判断与应用.专题: 计算题;阅读型;函数的性质及应用;三角函数的图像与性质.分析: 由零点存在定理,即可判断①;由y=tanx在(kπ﹣,kπ+)(k∈Z)递增,即可判断②;由二倍角的正切公式,及正切函数的周期,即可判断③;判断定义域是否关于原点对称,由于x=,f(x)=1,但x=﹣,1+sinx+cosx=0,f(x)无意义.则定义域不关于原点对称,即可判断④;运用向量的夹角为钝角的等价条件为数量积小于0,且不共线,解不等式即可判断⑤.解答: 对于①,由零点存在定理可得,第一次由于f(1)f(1.5)<0,则位于区间(1,1.5),第二次由于f(1.25)f(1.5)<0,则位于(1.25,1.5),则①正确;对于②,y=tanx在(kπ﹣,kπ+)(k∈Z)递增,则②错误;对于③,函数y==tan2x,则函数的最小正周期为π,则③正确;对于④,函数f(x)=,由于x=,f(x)=1,但x=﹣,1+sinx+cosx=0,f(x)无意义.则定义域不关于原点对称,则为非奇非偶函数.则④错误;对于⑤,由于=(x,2x),=(﹣3x,2),若∠BAC是钝角,则?<0,且,不共线,则﹣3x2+4x<0,且2x≠﹣6x2,解得x>或x<0且x≠﹣,则⑤错误.综上可得,①③正确.故答案为:①③.点评: 本题考查函数的零点、函数的奇偶性和周期性、单调性的判断,考查平面向量的夹角为钝角的条件,考查运算能力,属于基础题和易错题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=log2(1+x)+alog2(1﹣x)(a∈R)的图象关于y轴对称.(1)求函数f(x)的定义域;(2)求a的值;(3)若函数g(x)=x﹣2f(x)﹣2t有两个不同的零点,求实数t的取值范围.参考答案:【考点】对数函数的图象与性质.【分析】(1)由对数函数的定义即可求出函数的定义域,(2)根据偶函数的性质,即可求出a的值,(3)解法一:根据函数零点定理可得关于t的方程组,解得即可,解法二:分别作出函数y=x2+x﹣1(﹣1<x<1)和y=2t的图象,由图象可得.【解答】解:(1)由解得﹣1<x<1,所以函数f(x)的定义域为(﹣1,1).(2)依题意,可知f(x)为偶函数,所以f(﹣x)=f(x),即log2(1﹣x)+alog2(1+x)=log2(1+x)+alog2(1﹣x),即(a﹣1)[log2(1+x)﹣log2(1﹣x)]=0,即在(﹣1,1)上恒成立,所以a=1.(3)解法一:由(2)可知,所以g(x)=x2+x﹣1﹣2t,它的图象的对称轴为直线.依题意,可知g(x)在(﹣1,1)内有两个不同的零点,只需,解得.所以实数t的取值范围是.解法二:由(2)可知,所以g(x)=x2+x﹣1﹣2t.依题意,可知g(x)在(﹣1,1)内有两个不同的零点,即方程2t=x2+x﹣1在(﹣1,1)内有两个不等实根,即函数y=2t和y=x2+x﹣1在(﹣1,1)上的图象有两个不同的交点.在同一坐标系中,分别作出函数y=x2+x﹣1(﹣1<x<1)和y=2t的图象,如图所示.观察图形,可知当,即时,两个图象有两个不同的交点.所以实数t的取值范围是.19.化简、求值:

.

ks5u

参考答案:

20.(11分)计算:log3+lg25+lg4++log23?log34;设集合A={x|≤2﹣x≤4},B={x|m﹣1<x<2m+1}.若A∪B=A,求m的取值范围.参考答案:考点: 对数的运算性质;并集及其运算.专题: 函数的性质及应用;集合.分析: (1)根据对数的运算性质计算即可,(2)根据集合的运算,求出a范围,解答: (1)log3+lg25+lg4++log23?log34=log3﹣1+2lg5+2lg2+2+?2log32=﹣+2+2+2=;(2)化简集合A=,集合B=(m﹣1,2m+1)∵A∪B=A,∴B?A,当2m+1≤m﹣1,即m≤﹣2时,B=??A,当B≠?,即m>﹣2时,∴,解得﹣1≤m≤2,综上所述m的取值范围是(﹣∞,﹣2]∪点评: 本题考查了对数的运算性质和集合的运算,属于基础题21.集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}(1)求A∩B:(2)若集合C={x|2x+a>0}.满足B∪C=C.求实数a的取值范围.参考答案:【考点】集合的包含关系判断及应用.【分析】(1)化简B,根据集合的基本运算即可得到结论;(2)化简C,利用B∪C=C,可得B?C,即可求实数a的取值范围.【解答】解:(1)∵A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}={x|x≥2}.∴A∩B={x|2≤x<3};(2)C={x|2x+a>0}={x|x>﹣a}.∵B∪C=C,∴B?C,∴﹣a<2,∴a>﹣4.【点评】本题主要考查集合的基本运算,要求熟练掌握集合的交并运算,比较基础.22.(14分)已知函数f(x)=ax2﹣x+2a﹣1(a>0).(1)若f(x)在区间[1,2]为单调增函数,求a的取值范围;(2)设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式;(3)设函数h(x)=,若对任意x1,x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求实数a的取值范围.参考答案:【考点】二次函数的性质;函数的最值及其几何意义.【分析】(1)若f(x)在区间[1,2]为单调增函数,则,解得a的取值范围;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论