版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省德州市禹城市达标名校2024届中考三模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为()A.2 B.-2 C.±2 D.-2.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A. B. C. D.3.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个4.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O是△ABC的()A.外心 B.内心 C.三条中线的交点 D.三条高的交点5.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1 B. C. D.6.不等式组中两个不等式的解集,在数轴上表示正确的是A. B.C. D.7.下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件8.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是().A. B. C. D.9.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带③去 B.带②去 C.带①去 D.带①②去10.已知函数,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.肥皂泡的泡壁厚度大约是,用科学记数法表示为_______.12.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_____13.对于函数,若x>2,则y______3(填“>”或“<”).14.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.15.分式方程=1的解为_____16.已知线段AB=10cm,C为线段AB的黄金分割点(AC>BC),则BC=_____.三、解答题(共8题,共72分)17.(8分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.18.(8分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.19.(8分)如图,在中,以为直径的⊙交于点,过点作于点,且.()判断与⊙的位置关系并说明理由;()若,,求⊙的半径.20.(8分)综合与探究:如图,已知在△ABC中,AB=AC,∠BAC=90°,点A在x轴上,点B在y轴上,点在二次函数的图像上.(1)求二次函数的表达式;(2)求点A,B的坐标;(3)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积.21.(8分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化简,再求值:÷(2+),其中a=.22.(10分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度数;(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.23.(12分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;(2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论;(3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系;.24.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=1OD,OE=1OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(1)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图1.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m2-3=1,且m+1<0,解得:m=-2,故选:B.【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.2、C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故选C.点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.3、C【解析】
根据轴对称图形与中心对称图形的概念判断即可.【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、B【解析】
利用平行线间的距离相等,可知点到、、的距离相等,然后可作出判断.【详解】解:如图,过点作于,于,于.图1,(夹在平行线间的距离相等).如图:过点作于,作于E,作于.由题意可知:,,,∴,∴图中的点是三角形三个内角的平分线的交点,点是的内心,故选B.【点睛】本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.5、C【解析】连接AE,OD,OE.∵AB是直径,∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD.∴△AOD是等边三角形.∴∠A=60°.又∵点E为BC的中点,∠AED=90°,∴AB=AC.∴△ABC是等边三角形,∴△EDC是等边三角形,且边长是△ABC边长的一半2,高是.∴∠BOE=∠EOD=60°,∴和弦BE围成的部分的面积=和弦DE围成的部分的面积.∴阴影部分的面积=.故选C.6、B【解析】由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B.7、A【解析】试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A.考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件.8、C【解析】
根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.9、A【解析】
第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.【详解】③中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.故选:A.【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题.10、D【解析】
解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11、7×10-1.【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0007=7×10-1.故答案为:7×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12、(672,2019)【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.详解:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位,∵2018÷3=672…2,∴走完第2018步,为第673个循环组的第2步,所处位置的横坐标为672,纵坐标为672×3+3=2019,∴棋子所处位置的坐标是(672,2019).故答案为:(672,2019).点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.13、<【解析】
根据反比例函数的性质即可解答.【详解】当x=2时,,∵k=6时,∴y随x的增大而减小∴x>2时,y<3故答案为:<【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围.14、【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.【详解】画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:=.
故答案为:.【点睛】本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.15、x=0.1【解析】分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.详解:方程两边都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,当x=1时,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案为:x=0.1点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.16、(15-55).【解析】试题解析:∵C为线段AB的黄金分割点(AC>BC),∴AC=5-12AB=AC=5-1∴BC=AB-AC=10-(55-5)=(15-55)cm.考点:黄金分割.三、解答题(共8题,共72分)17、(1)25;28;(2)平均数:1.2;众数:3;中位数:1.【解析】
(1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;(2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.【详解】解:(1)根据条形图2+5+7+8+3=25(人),
m=100-20-32-12-8=28;故答案为:25;28;(2)观察条形统计图,∵∴这组数据的平均数是1.2.∵在这组数据中,3出现了8次,出现的次数最多,∴这组数据的众数是3.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1,∴这组数据的中位数是1.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.18、见解析【解析】试题分析:已知AB∥CD,根据两直线平行,内错角相等可得∠B=∠ECD,再根据SAS证明△ABC≌△ECD全,由全等三角形对应边相等即可得AC=ED.试题解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.考点:平行线的性质;全等三角形的判定及性质.19、(1)DE与⊙O相切,详见解析;(2)5【解析】
(1)根据直径所对的圆心角是直角,再结合所给条件∠BDE=∠A,可以推导出∠ODE=90°,说明相切的位置关系。(2)根据直径所对的圆心角是直角,并且在△BDE中,由DE⊥BC,有∠BDE+∠DBE=90°可以推导出∠DAB=∠C,可判定△ABC是等腰三角形,再根据BD⊥AC可知D是AC的中点,从而得出AD的长度,再在Rt△ADB中计算出直径AB的长,从而算出半径。【详解】(1)连接OD,在⊙O中,因为AB是直径,所以∠ADB=90°,即∠ODA+∠ODB=90°,由OA=OD,故∠A=∠ODA,又因为∠BDE=∠A,所以∠ODA=∠BDE,故∠ODA+∠ODB=∠BDE+∠ODB=∠ODE=90°,即OD⊥DE,OD过圆心,D是圆上一点,故DE是⊙O切线上的一段,因此位置关系是直线DE与⊙O相切;(2)由(1)可知,∠ADB=90°,故∠A+∠ABD=90°,故BD⊥AC,由∠BDE=∠A,则∠BDE+∠ABD=90°,因为DE⊥BC,所以∠DEB=90°,故在△BDE中,有∠BDE+∠DBE=90°,则∠ABD=∠DBE,又因为BD⊥AC,即∠ADB=∠CDB=90°,所以∠DAB=∠C,故△ABC是等腰三角形,BD是等腰△ABC底边BC上的高,则D是AC的中点,故AD=AC=×16=8,在Rt△ABD中,tanA===,可解得BD=6,由勾股定理可得AB===10,AB为直径,所以⊙O的半径是5.【点睛】本题主要考查圆中的计算问题和与圆有关的位置关系,解本题的要点在于求出AD的长,从而求出AB的长.20、(1);(2);(3).【解析】
(1)将点代入二次函数解析式即可;(2)过点作轴,证明即可得到即可得出点A,B的坐标;(3)设点的坐标为,解方程得出四边形为平行四边形,求出AC,AB的值,通过扫过区域的面积=代入计算即可.【详解】解:(1)∵点在二次函数的图象上,.解方程,得∴二次函数的表达式为.(2)如图1,过点作轴,垂足为..,.在和中,∵,.∵点的坐标为,..(3)如图2,把沿轴正方向平移,当点落在抛物线上点处时,设点的坐标为.解方程得:(舍去)或由平移的性质知,且,∴四边形为平行四边形,.扫过区域的面积==.【点睛】本题考查了二次函数与几何综合问题,涉及全等三角形的判定与性质,平行四边形的性质与判定,勾股定理解直角三角形,解题的关键是灵活运用二次函数的性质与几何的性质.21、(1)5+;(2)【解析】试题分析:(1)先分别进行绝对值化简,0指数幂、负指数幂的计算,特殊三角函数值、二次根式的化简,然后再按运算顺序进行计算即可;(2)括号内先通分进行加法运算,然后再进行分式除法运算,最后代入数值进行计算即可.试题解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;(2)原式==,当a=时,原式==.22、:(1)30º;(2).【解析】分析:(1)由已知条件易得∠ABC=∠A=60°,结合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;(2)过点D作DH⊥AB于点H,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,这样即可由梯形的面积公式求出梯形ABCD的面积了.详解:(1)∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,∴∠CBA=∠A=60º,∵BD平分∠ABC,∴∠CDB=∠ABD=∠CBA=30º,(2)在△ACD中,∵∠ADB=180º–∠A–∠ABD=90º.∴BD=ADA=2tan60º=2.过点D作DH⊥AB,垂足为H,∴AH=ADA=2sin60º=.∵∠CDB=∠CBD=∠CBD=30º,∴DC=BC=AD=2∵AB=2AD=4∴.点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.23、(1)证明见解析;(2)AE=23BF,(3)AE=m【解析】
(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=mn【详解】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如图2中,结论:AE=23理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)结论:AE=mn理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=mn【点睛】本题考查了四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024个人珠宝买卖合同范本
- 2024年度版权质押合同:含版权内容、质押价值、质权实现
- 旅游推广合作合同实例
- 摄影棚居间服务合同样本
- 房屋销售合同模板手册
- 乐团合作合同范本大全
- 电子邮件服务租用协议
- 2024家教公司与兼职教师合作合同范本
- 企业房屋租赁合同范本
- 2024保密合同样书范文
- 2024年广西安全员C证考试题库及答案
- 期末测试卷(试题)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2024至2030年中国手机配件产业需求预测及发展趋势前瞻报告
- 2024年小学闽教版全册英语词汇表
- 课题开题汇报(省级课题)
- 清真食品安全管理制度
- 学校心理健康教育合作协议书
- 2024江苏省沿海开发集团限公司招聘23人(高频重点提升专题训练)共500题附带答案详解
- 2024年初级社会体育指导员(游泳)技能鉴定考试题库(含答案)
- 湖北省危险废物监管物联网系统管理计划填报说明
- Unit6ADayintheLife教学设计2024-2025学年人教版(2024)英语七年级上册
评论
0/150
提交评论