版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Unit5UnderstandingDigitalSignalProcessing5.1Text5.2ReadingMaterials
5.1Text
Overviewofdigitalsignalprocessing
1.DigitalRepresentationofaWaveform
Adigitalsignalprocessingsystemtakesacontinuoussoundwaveasinput,feedsitthroughananaloglow-passfilter(ananti-aliasingfilter)toremoveallfrequenciesabovehalfthesamplingrate(seeNyquist’ssamplingtheorem).
ThisAnalog-to-DigitalConverter(ADC)filtersandsamplesthewaveamplitudeatequally-spacedtimeintervalsandgeneratesasimplelistoforderedsamplevaluesinsuccessivememorylocationsinthecomputer.Thesamplevalues,representingamplitudes,areencodedusingsomenumberofbitsthatdetermineshowaccuratelythesamplesaremeasured.TheProcessorisacomputerthatappliesnumericaloperationstothesampledwaves.InFig5.1,itseemstheprocessorhaslow-passfilteredthesignal,thusremovingthejumpyirregularitiesintheinputwave.
WhenthesignalisconvertedbackintoanaudiosignalbytheDigital-AnalogConverter(DAC),therewillbejaggedirregularitiesthatarequantizationerrors.Ofcourse,thesewilllieabovetheNyquistfrequency,sothenewanalogsignal(backinrealtime)needsanotheranalog,low-passfilteronoutputsinceeverythingabovetheNyquistfrequencyisanoisyartefact.
Fig5.1Adigitalsignalprocessingsystemandwaves
2.Samplingtheorem
‘Nyquistfreq’=(samplingrate)/2
Aliasingproblem(frequenciesaboveNyquistfrequencygetmappedtolowerfrequencies).ThreekindsofwaveformisshowninFig5.2.Theleftmostwavebelowhas8samplespercycle(thatis,thefrequencyis1/8thesamplerate(state)).Themiddlecurveisthehighestfrequencythatcanberepresentedbythissamplerate.Therightmostfigureismuchtoofast,sothesampledwavewillsoundlike(bealiasedas)theslowdottedcurve(whichisidenticaltotheleftmostcurve).
Fig5.2Threekindsofwaveform
Solution:applyinputfilterbeforesamplingtoremoveallunwantedinputs.AnyenergyremainingabovetheNyquistfrequencywillbemappedontolowerfrequencies.Ofcourse,onmoderndigitalequipment,thisfilteringistakencareofforyou.
3.Quantizationofamplitude(limitedsetofamplitudevalues)
Whenthesampledsignalisconvertedbackintorealtime,ofcourse,thereareonlyassignedvaluesspecifiedatthesamplepoints.Theoutputsignalwilljustbeflatuntilthenextsamplecomesalong.Theseflatspotswillbeperceivedbyalistenerasahigh-frequencysignal(abovetheNyquistfreq),butitwillbenoise.
Sotheredcurve(Fig5.3)belowmustbesmoothed(lowpassfiltered)intothegreencurvebelowinordertosoundright.Ofcourse,ifthesamplerateisthatofthecommercialCDstandard,thenthisnoisewillbeabovethelimitsofhumanhearing—soyourownearcanserveasthelowpassquantizationfilter.Indeed,sinceloudspeakersdonotnormallyproducesoundsabove20kH,theytoocanalsoserveasthislowpassoutputfilter.
Fig5.3Redcurveissmoothedintogreencurve
Technicalwordsandphrases
overview n.综述;概观
waveform n.波形
analog adj.模拟的
anti- pref.表示“反对,抵抗”之义
amplitude
n.振幅
processor n.处理器
irregularity n.不规则;无规律;不整齐
jag vt.使成锯齿状;使成缺口
artefact n.人工制品,加工品
interval
n.间隔;间距
alias n.别名,化名adv.别名叫;化名为
curve n.曲线
dot n.点,圆点
flat vt.使变平
perceive
vt.感觉;理解vi.感到,感知;认识到
loudspeakern.喇叭,扬声器;扩音器
alow-passfilter 低通滤波器
jumpyirregularities 不规则跳动
inputwave 输入波
Samplingtheorem 采样定理
getmappedto 映射到
soundlike
被看做
bealiassedas 被混叠为
dottedcurve 虚线
bemappedonto 标示到
quantizationofamplitude 振幅的量化
limitedset
极限设置
ADC(Analog-to-DigitalConverter) 模拟-数字转换
DAC(Digital-AnalogConverter) 数字-模拟转换
Nyquist奈奎斯特,美国物理学家。1917年获得耶鲁大学哲学博士学位。奈奎斯特为近代信息理论做出了突出贡献。他总结的奈奎斯特采样定理是信息论,特别是通信与信号处理学科中的一个重要基本结论。
5.1.1Exercises
1.PutthePhrasesintoEnglish
(1)数字信号处理系统;
(2)连续声波;
(3)模拟低通滤波器;
(4)采样值;
(5)音频信号; (6)量化错误。
2.PutthePhrasesintoChinese
(1)ananti-aliasingfilter;
(2)moderndigitalequipment;
(3)orderedsamplevalues;
(4)equally-spacedtimeintervals;
(5)samplepoints;
(6)lowpassquantizationfilter;
(7)limitsofhumanhearing;
(8)jumpyirregularities.
3.Translation
(1)Thesamplevalues,representingamplitudes,areencodedusingsomenumberofbitsthatdetermineshowaccuratelythesamplesaremeasured.
(2)WhenthesignalisconvertedbackintoanaudiosignalbytheDigital-AnalogConverter(DAC),therewillbejaggedirregularities(shownbelowonthispage)thatarequantizationerrors.
(3)Therightmostfigureismuchtoofast,sothesampledwavewillsoundlike(bealiasedas)theslowdottedcurve(whichisidenticaltotheleftmostcurve).
(4)Theoutputsignalwilljustbeflatuntilthenextsamplecomesalong.
(5)IfthesamplerateisthatofthecommercialCDstandard,thenthisnoisewillbeabovethelimitsofhumanhearing--soyourownearcanserveasthelowpassquantizationfilter.
5.1.2参考译文
数字信号处理概述
1.波形的数字表示
数字信号处理系统将连续声波作为输入信号,把这些信号送入模拟低通滤波器(抗混叠滤波器)以消除所有高于采样率一半以上的频率(见奈奎斯特采样定理)。这种模拟-数字转换器(ADC)在间距相等的时间间隔内过滤和采样波的振幅,并在计算机中的连续内存位置生成一个有序样本值的简单列表。采样值即振幅,由一些决定如何准确测量样品的位数编码而成。处理器是一台适用于采样波数值运算的电脑。
如图5.1所示,处理器有低通滤波信号的功能,从而消除了输入波的不规则跳动。当信号被数字-模拟转换器(DAC)转换成音频信号后,会有锯齿状的不规则波形即量化错误。当然,这些都将基于之前提到的奈奎斯特频率,所以新的模拟信号(实时)在输出端需要另一个模拟低通滤波器,因为所有高于奈奎斯特频率的都是嘈杂现象。
2.采样定理
奈奎斯特频率 = 采样频率/2
混叠问题(奈奎斯特频率以上的频率映射到较低的频率)。三种波形如图5.2所示。图中最左边的波形每个周期有8个样本(即频率为1/8的采样率(srate))。中间波形的频率是最高的,可以通过这个采样率来表示。最右边的波形频率特别高,所以采样波将被看做(被混叠为)缓慢的虚线(这与最左边的曲线相同)。
解决:在采样以前使用输入滤波器消除所有不需要的输入。任何高于奈奎斯特频率的能量将被映射到较低的频率。当然,在现代的数字设备上,滤波器会自动完成这些工作。
3.振幅的量化(振幅值的极限设置)
当然,当采样信号被转化回实时信号时,只在采样点分配指定值。输出信号将较为平缓直到下一个采样进来。这些平缓的信号将被收听者视为一个高频信号(高于奈奎斯特频率),但它也可能是噪音。因此,为了使收听者收到正常信号,图5.3中的红色曲线必须平滑过渡到(低通滤波)绿色曲线。当然,如果采样率是商业CD标准,那么这种噪音会高于人类听觉的限制,所以你自己的耳朵可以作为低通量化滤波器。事实上,由于扬声器不再产生20kHz以上的声音,它们也能作为低通输出滤波器。
5.2ReadingMaterials
5.2.1TheDiscrete-timeFourierTransform
Inmathematics,thediscrete-timeFouriertransform(DTFT)(Fig5.4)isoneofthespecificformsofFourieranalysis.Assuch,ittransformsonefunctionintoanother,whichiscalledthefrequencydomainrepresentation,orsimplythe“DTFT”,oftheoriginalfunction(whichisoftenafunctioninthetime-domain).ButtheDTFTrequiresaninputfunctionthatisdiscrete.Suchinputsareoftencreatedbysamplingacontinuousfunction,likeaperson’svoice.Fig5.4Fouriertransforms
TheDTFTfrequency-domainrepresentationisalwaysaperiodicfunction.Sinceoneperiodofthefunctioncontainsalloftheuniqueinformation,itissometimesconvenienttosaythattheDTFTisatransformtoa“finite”frequency-domain(thelengthofoneperiod),ratherthantotheentirerealline.ItisPontryagindualtotheFourierseries,whichtransformsfromaperiodicdomaintoadiscretedomain.
Definition
Givenadiscretesetofrealorcomplexnumbers:(integers),thediscrete-timeFouriertransform(orDTFT)ofisusuallywritten:
(5-2-1)
Relationshiptosampling
Oftenthesequencerepresentsthevalues(akasamples)ofacontinuous-timefunction,,atdiscretemomentsintime:,whereTisthesamplinginterval(inseconds),and
1/T = fsisthesamplingrate(samplespersecond).ThentheDTFTprovidesanapproximationofthecontinuous-timeFouriertransform:
(5-2-2)
Tounderstandthis,considerthePoissonsummationformula,whichindicatesthataperiodicsummationoffunctionX(f)canbeconstructedfromthesamplesoffunctionx(t)Theresultis:
(5-2-3)
Theright-handsidesofEq.2andEq.1areidenticalwiththeseassociations:
(5-2-4)
(5-2-5)
XT(f)comprisesexactcopiesofX(f)thatareshiftedbymultiplesofƒsandcombinedbyaddition.Forsufficientlylargeƒs,thek=0termcanbeobservedintheregion[−ƒs/2,ƒs/2]withlittleornodistortion(aliasing)fromtheotherterms.
Periodicity
Samplingx(t)causesitsspectrum(DTFT)tobecomeperiodic.Intermsofordinaryfrequency,f(cyclespersecond),theperiodisthesamplerate,fs.Intermsofnormalizedfrequency,f/fs(cyclespersample),theperiodis1.Andintermsof(radianspersample),theperiodis2π,whichalsofollowsdirectlyfromtheperiodicityof.Thatis:
(5-2-6)
wherebothnandkarearbitraryintegers.Therefore:
(5-2-7)
ThepopularalternatenotationX(eiω)fortheDTFTX(ω):
1.highlightstheperiodicityproperty.
2.HelpsdistinguishbetweentheDTFTandunderlyingFouriertransformofx(t);thatis,X(f)(orX(ω)).
3.emphasizestherelationshipoftheDTFTtotheZ-transform.
However,itsrelevanceisobscuredwhentheDTFTisformedbythefrequencydomainmethod(superposition),asdiscussedabove.Sothenotationisalsocommonlyused,asinthetabletofollow.
Inversetransform
Thefollowinginversetransformsrecoverthediscrete-timesequence:
(5-2-8)
TheintegralsspanonefullperiodoftheDTFT,whichmeansthatthex[n]samplesarealsothecoefficientsofaFourierseriesexpansionoftheDTFT.Infinitelimitsofintegrationchangethetransformintoacontinuous-timeFouriertransform[inverse],whichproducesasequenceofDiracimpulses.Thatis:
(5-2-9)
FIRfiltersarefiltershavingatransferfunctionofapolynomialinz-andisanall-zerofilterinthesensethatthezeroesinthez-planedeterminethefrequencyresponsemagnitudecharacteristic.TheztransformofaN-pointFIRfilterisgivenby
(5-2-10)
FIRfiltersareparticularlyusefulforapplicationswhereexactlinearphaseresponseisrequired.TheFIRfilterisgenerallyimplementedinanon-recursivewaywhichguaranteesastablefilter.FIRfilterdesignessentiallyconsistsoftwoparts:
(i)approximationproblem.
(ii)realizationproblem.
TheWindowMethod
Inthismethod,thedesiredfrequencyresponsespecificationHd(ω),correspondingunitsampleresponsehd(n)isdeterminedusingthefollowingrelation:
-∞≤n≤∞
(5-2-11)
Where
(5-2-12)
Ingeneral,unitsampleresponsehd(n)obtainedfromtheaboverelationisinfiniteinduration,soitmustbetruncatedatsomepointsayn =M-1toyieldanFIRfilteroflengthM(i.e.0toM-1).Thistruncationofhd(n)tolengthM-1issameasmultiplyinghd(n)bytherectangularwindowdefinedas:
w(n)=10≤n≤M-1
0otherwise
(5-2-13)
ThustheunitsampleresponseoftheFIRfilterbecomes:
h(n) = hd(n)w(n)
=
hd(n)0≤n≤M-1
= 0otherwise
(5-2-14)
Now,themultiplicationofthewindowfunctionw(n)withhd(n)isequivalenttoconvolutionofHd(ω)withW(ω),whereW(ω)isthefrequencydomainrepresentationofthewindowfunction:
(5-2-15)
ThustheconvolutionofHd(ω)withW(ω)yieldsthefrequencyresponseofthetruncatedFIRfilter:
(5-2-16)
Thefrequencyresponsecanalsobeobtainedusingthefollowingrelation:
(5-2-17)
Butdirecttruncationofhd(n)toMtermstoobtainh(n)leadstotheGibbsphenomenoneffectwhichmanifestsitselfasafixedpercentageovershootandripplebeforeandafteranapproximateddiscontinuityinthefrequencyresponseduetothenon-uniformconvergenceofthefourierseriesatadiscontinuity.Thusthefrequencyresponseobtainedbyusing(8)containsripplesinthefrequencydomain.
Inordertoreducetheripples,insteadofmultiplyinghd(n)witharectangularwindoww(n),hd(n)ismultipliedwithawindowfunctionthatcontainsataperanddecaystowardzerogradually,insteadofabruptlyasitoccursinarectangularwindow.Asmultiplicationofsequenceshd(n)andw(n)intimedomainisequivalenttoconvolutionofHd(ω)andW(ω)inthefrequencydomain,ithastheeffectofsmoothingHd(ω).
TheseveraleffectsofwindowingtheFouriercoefficientsofthefilterontheresultofthefrequencyresponseofthefilterareasfollows:
(i)AmajoreffectisthatdiscontinuitiesinH(ω)becometransitionbandsbetweenvaluesoneithersideofthediscontinuity.
(ii)Thewidthofthetransitionbandsdependsonthewidthofthemainlobeofthefrequencyresponseofthewindowfunction,w(n)i.e.W(ω).
(iii)Sincethefilterfrequencyresponseisobtainedviaaconvolutionrelation,itisclearthattheresultingfiltersareneveroptimalinanysense.
(iv)AsM(thelengthofthewindowfunction)increases,themainlobewidthofW(ω)isreducedwhichreducesthewidthofthetransitionband,butthisalsointroducesmorerippleinthefrequencyresponse.
(v)Thewindowfunctioneliminatestheringingeffectsatthebandedgeanddoesresultinlowersidelobesattheexpenseofanincreaseinthewidthofthetransitionbandofthefilter.
TheFrequencySamplingTechnique
Inthismethod,thedesiredfrequencyresponseisprovidedasinthepreviousmethod.NowthegivenfrequencyresponseissampledatasetofequallyspacedfrequenciestoobtainNsamples.Thus,samplingthecontinuousfrequencyresponseHd(ω)atNpointsessentiallygivesustheN-pointDFTofHd(2pnk/N).ThusbyusingtheIDFTformula,thefiltercoefficientscanbecalculatedusingthefollowingformula:
(5-2-18)
NowusingtheaboveN-pointfilterresponse,thecontinuousfrequencyresponseiscalculatedasaninterpolationofthesampledfrequencyresponse.Theapproximationerrorwouldthenbeexactlyzeroatthesamplingfrequenciesandwouldbefiniteinfrequenciesbetweenthem.Thesmootherthefrequencyresponsebeingapproximated,thesmallerwillbetheerrorofinterpolationbetweenthesamplepoints.
Onewaytoreducetheerroristoincreasethenumberoffrequencysamples[Rab75].Theotherwaytoimprovethequalityofapproximationistomakeanumberoffrequencysamplesspecifiedasunconstrainedvariables.Thevaluesoftheseunconstrainedvariablesaregenerallyoptimizedbycomputertominimizesomesimplefunctionoftheapproximationerrore.g.onemightchooseasunconstrainedvariablesthefrequencysamplesthatlieinatransitionbandbetweentwofrequencybandsinwhichthefrequencyresponseisspecifiede.g.inthebandbetweenthepassbandandthestopbandofalowpassfilter.
Therearetwodifferentsetoffrequenciesthatcanbeusedfortakingthesamples.Onesetoffrequencysamplesareatfk=k/Nwherek=0,1,…,N-1.Theothersetofuniformlyspacedfrequencysamplescanbetakenatfk=(k+½)/Nfork=0,1,…,N-1.
Thesecondsetgivesustheadditionalflexibilitytospecifythedesiredfrequencyresponseatasecondpossiblesetoffrequencies.Thusagivenbandedgefrequencymaybeclosertotype-IIfrequencysamplingpointthattotype-Iinwhichcaseatype-IIdesignwouldbeusedinoptimizationprocedure.
Meritsoffrequencysamplingtechnique
(i)Unlikethewindowmethod,thistechniquecanbeusedforanygivenmagnituderesponse.
(ii)Thismethodisusefulforthedesignofnon-prototypefilterswherethedesiredmagnituderesponsecantakeanyirregularshape.
Therearesomedisadvantageswiththismethodi.ethefrequencyresponseobtainedbyinterpolationisequaltothedesiredfrequencyresponseonlyatthesampledpoints.Attheotherpoints,therewillbeafiniteerrorpresent.
OptimalFilterDesignMethods
Manymethodsarepresentunderthiscategory.Thebasicideaineachmethodistodesignthefiltercoefficientsagainandagainuntilaparticularerrorisminimized.Thevariousmethodsareasfollows:
(i)Leastsquarederrorfrequencydomaindesign.
(ii)NonlinearequationsolutionformaximalrippleFIRfilters.
(iii)PolynomialinterpolationsolutionformaximalrippleFIRfilters.
Leastsquarederrorfrequencydomaindesign
Asseeninthepreviousmethodoffrequencysamplingtechniquethereisnoconstraintontheresponsebetweenthesamplepoints,andpoorresultsmaybeobtained.
Thefrequencysamplingtechniqueismoreofaninterpolationmethodratherthananapproximationmethod.Thismethodcontrolstheresponsebetweenthesamplepointsbyconsideringanumberofsamplepointslargerthantheorderofthefilter.Thepurposeofmostfiltersistoseparatedesiredsignalsfromundesiredsignalsornoise.Astheenergyofthesignalisrelatedtothesquareofthesignal,asquarederrorapproximationcriterionisappropriatetooptimizethedesignoftheFIRfilters.
ThefrequencyresponseoftheFIRfilterisgivenby(5-2-19)foraN-pointFIRfilter.Anerrorfunctionisdefinedasfollows:
(5-2-19)
WhereandHd(ωk)areLsamplesofthedesiredresponse,whichistheerrormeasureasasumofthesquareddifferencesbetweentheactualanddesiredfrequencyresponseoverasetofLfrequencysamples.Themethodconsistsofthefollowingsteps:
(i)First‘L’samplesfromthecontinuousfrequencyresponsearetaken,whereL>N(lengthoftheimpulseresponseoffiltertobedesigned).
(ii)Thenusingthefollowingformula:
(5-2-20)
theL-pointfilterimpulseresponseiscalculated.
(iii)ThentheobtainedfilterimpulseresponseissymmetricallytruncatedtodesiredlengthN.
(iv)Thenthefrequencyresponseiscalculatedusingthefollowingrelation:
(5-2-21)
(v)Themagnitudeofthefrequencyresponseatthesefrequencypointsforwillnotbeequaltothedesiredones,buttheoverallleastsquareerrorwillbereducedeffectivelythiswillreducetherippleinthefilterresponse.
Tofurtherreducetherippleandovershootnearthebandedges,atransitionregionwillbedefinedwithalineartransferfunction.ThentheLfrequencysamplesaretakenatusingwhichthefirstNsamplesofthefilterarecalculatedusingtheabovemethod.Usingthismethod,reducestherippleintheinterpolatedfrequencyresponse.
NonlinearEquationsolutionformaximalrippleFIRfilters
TherealpartofthefrequencyresponseofthedesignedFIRfiltercanbewrittenaswherelimitsofsummationanda(n)varyaccordingtothetypeofthefilter.ThenumberoffrequenciesatwhichH(ω)couldattainanextremumisstrictlyafunctionofthetypeofthelinearphasefilteri.e.whetherlengthNoffilterisoddorevenorfilterissymmetricoranti-symmetric.
Ateachextremum,thevalueofH(ω)ispredeterminedbyacombinationoftheweightingfunctionW(ω),thedesiredfrequencyresponse,andaquantitythatrepresentsthepeakerrorofapproximationdistributingthefrequenciesatwhichH(ω)attainsanextremalvalueamongthedifferentfrequencybandsoverwhichadesiredresponsewasbeingapproximated.Sincethesefiltershavethemaximumnumberofripples,theyarecalledmaximalripplefilters.
Thismethodisasfollows:
1.AteachoftheNeunknownexternalfrequencies,E(ω)attainsthemaximumvalueofeitherandE(ω)orequivalentlyH(ω)haszeroderivative.ThustwoNeequationsoftheform
areobtained.
(5-2-22)
(5-2-23)
Theseequationsrepresentasetof2NenonlinearequationsintwoNeunknowns,NeimpulseresponsecoefficientsandNefrequenciesatwhichH(ω)obtainstheextremalvalue.ThesetoftwoNeequationsmaybesolvediterativelyusingnonlinearoptimizationprocedure.
Animportantthingtonoteisthatherethepeakerror()isafixedquantityandisnotminimizedbytheoptimizationscheme.ThustheshapeofH(ω)ispostulatedaprioriandonlythefrequenciesatwhichH(ω)attainstheextremalvaluesareunknown.
Thedisadvantageofthismethodisthatthedesignprocedurehasnowayofspecifyingbandedgesforthedifferentfrequencybandsofthefilter.Thustheoptimizationalgorithmisfreetoselectexactlywherethebandswilllie.
PolynomialInterpolationSolutionforMaximalRippleFIRfilters
ThisalgorithmisbasicallyaniterativetechniqueforproducingapolynomialH(ω)thathasextremaofdesiredvalues.ThealgorithmbeginsbymakinganinitialestimateofthefrequenciesatwhichtheextremainH(ω)willoccurandthenusesthewell-knownLagrangeinterpolationformulatoobtainapolynomialthatalternativelygoesthroughthemaximumallowableripplevaluesatthesefrequencies.Ithasbeenexperimentallyfoundthattheinitialguessofextremalfrequenciesdoesnotaffecttheultimateconvergenceofthealgorithmbutinsteadaffectsthenumberofiterationsrequiredtoachievethedesiredresult.
Letusconsiderthecaseofdesignofalowpassfilterusingtheabovemethod.
TheFig5.5showstheresponseofalowpassfilterwithN=11.Thenumberofextremalfrequenciesi.e.thefrequencieswhereripplesoccurare6inthiscase.Theyaredividedinto3passbandextremaand3stopbandextrema.ThefilleddotsindicatetheinitialguessastotheextremalfrequenciesofH(ω).ThesolidlineistheinitialLagrangepolynomialobtainedbychoosingpolynomialcoefficientssothatthevaluesofthepolynomialattheguessedsetoffrequenciesareidenticaltotheassignedextremevalues.
Butthispolynomialhasextremathatexceedsthespecifiedmaximavalues.ThenextstageofthealgorithmistolocatethefrequenciesatwhichtheextremaofthefirstLagrangeinterpolationoccur.Thesefrequenciesarenowusedasthenewfrequenciesforwhichtheextremaofthefilterresponseoccur.ThissecondsetoffrequenciesareindicatedbyopendotsinFig5.5.Nowsimilarlythenewsetoffrequenciesaretakenasthosefrequencieswherethemaximumexceedsthespecifiedmaxima.Thusthemethodiscompletelyiterativeinnature.Fig5.5Iterativesolutionforamaximumripplelowpassfilter
IIRfilterdesign
Typicalfrequency-selectivefiltershavetheclosedformformulas,butarbitraryfiltershaven’ttheclosedformformulasindesign.Inthiscase,weapplythecomputer-aideddesigntechniquestodesignthedesiredfilter.
MostalgorithmicdesignproceduresforIIRfilterstakethefollowingform:
1.H(z)isassumedtoberationalfunction.Itcanberepresentedasaratioofpolynomialinz(orz-1),asaproductofnumeratoranddenominatorfactors(zerosandpoles),orasaproductofsecond-orderfactors.
2.TheordersofthenumeratoranddenominatorofH(z)arefixed.
3.Anidealdesiredfrequencyresponseandacorrespondingapproximationerrorcriterionischosen.
4.Byasuitableoptimizationalgorithm,thefreeparameters(numeratoranddenominatorcoefficients,zeroandpoles,etc)arevariedinasystematicwaytominimizetheapproximationerroraccordingtotheassumederrorcriterion.
5.Thesetofparametersthatminimizestheapproximationerrordeterminesthesystemfunctionofthedesiredsystem.
Deczky’sMethod
InDeczky’smethod,thesystemfunctionofthefilterisrepre
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度区块链技术研发合同
- 二零二四年劳动合同模板
- 2024年度互联网在线教育平台合作协议
- 2024年度南京商标转让合同
- 2024年度出租车行业碳排放减少合同
- 托儿所服务的心理健康教育与维护考核试卷
- 2024年度线上线下融合营销合同
- 2024年度采购合同标的为工业自动化设备
- 新能源技术的产业链整合与发展策略考核试卷
- 2024版水利工程专用石料采购合同
- 2024-2030年版中国测绘行业发展机遇分析及投资策略研究报告
- 《雨污水管道施工方案》
- 体育场馆安全管理与风险排查治理制度
- 2024年中国建筑预制件市场调查研究报告
- 《学前教育法》是学前教育工作者的新征程
- 安全环保职业健康法律法规清单2024年
- 治本攻坚三年行动
- 行政复议法-形考作业2-国开(ZJ)-参考资料
- 2024年湖北汉江王甫洲水力发电有限责任公司招聘笔试参考题库含答案解析
- 职业生涯规划书(14篇)
- 现代药物制剂与新药研发智慧树知到答案章节测试2023年苏州大学
评论
0/150
提交评论