版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东滨州无棣县2024年中考数学仿真试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A. B. C. D.2.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3cm,则∠BAC的度数为()A.15°
B.75°或15°
C.105°或15°
D.75°或105°3.已知是一个单位向量,、是非零向量,那么下列等式正确的是()A. B. C. D.4.下列各式计算正确的是()A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b25.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12km/hB.妈妈比小亮提前0.5h到达姥姥家C.妈妈在距家12km处追上小亮D.9:30妈妈追上小亮6.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是()A. B. C. D.7.如图,网格中的每个小正方形的边长是1,点M,N,O均为格点,点N在⊙O上,若过点M作⊙O的一条切线MK,切点为K,则MK=()A.3 B.2 C.5 D.8.二次函数y=ax2+bx+c(a≠0)和正比例函数y=﹣x的图象如图所示,则方程ax2+(b+)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定9.如图,等腰△ABC中,AB=AC=10,BC=6,直线MN垂直平分AB交AC于D,连接BD,则△BCD的周长等于()A.13 B.14 C.15 D.1610.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为()A.+=18 B.=18C.+=18 D.=18二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD=16cm1,S△BQC=15cm1,则图中阴影部分的面积为_____cm1.12.如果分式的值是0,那么x的值是______.13.不等式组的解集是▲.14.若分式方程的解为正数,则a的取值范围是______________.15.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=6,点D,E分别是边BC,AC上的动点,则DA+DE的最小值为_____.16.16的算术平方根是.三、解答题(共8题,共72分)17.(8分)如图所示,直线y=﹣2x+b与反比例函数y=交于点A、B,与x轴交于点C.(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直线AB的解析式.18.(8分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)19.(8分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.20.(8分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:通过取点、画图、测量,得到了x与y的几组值,如下表:012336说明:补全表格时相关数据保留一位小数建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.21.(8分)先化简,再求值:,其中的值从不等式组的整数解中选取.22.(10分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.(1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为;(2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;②M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.23.(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?24.解分式方程:.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】看到的棱用实线体现.故选C.2、C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.3、B【解析】
长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A.由于单位向量只限制长度,不确定方向,故错误;B.符合向量的长度及方向,正确;C.得出的是a的方向不是单位向量,故错误;D.左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.4、C【解析】
根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.【详解】A.a+3a=4a,故不正确;B.(–a2)3=(-a)6,故不正确;C.a3·a4=a7,故正确;D.(a+b)2=a2+2ab+b2,故不正确;故选C.【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.5、D【解析】
根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D.【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.6、C【解析】
从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,故选C.7、B【解析】
以OM为直径作圆交⊙O于K,利用圆周角定理得到∠MKO=90°.从而得到KM⊥OK,进而利用勾股定理求解.【详解】如图所示:MK=.故选:B.【点睛】考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.8、C【解析】
设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论.【详解】解:设的两根为x1,x2,∵由二次函数的图象可知,,.设方程的两根为m,n,则.故选C.【点睛】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.9、D【解析】
由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由△CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【详解】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16,故选D.【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用.10、B【解析】
根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.故选B【点睛】本题考核知识点:分式方程的应用.解题关键点:根据时间关系,列出分式方程.二、填空题(本大题共6个小题,每小题3分,共18分)11、41【解析】试题分析:如图,连接EF∵△ADF与△DEF同底等高,∴S△ADF=S△DEF,即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=16cm1,同理可得S△BQC=S△EFQ=15cm1,、∴阴影部分的面积为S△EPF+S△EFQ=16+15=41cm1.考点:1、三角形面积,1、平行四边形12、1.【解析】
根据分式为1的条件得到方程,解方程得到答案.【详解】由题意得,x=1,故答案是:1.【点睛】本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.13、﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x>﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.14、a<8,且a≠1【解析】分式方程去分母得:x=2x-8+a,解得:x=8-a,根据题意得:8-a>2,8-a≠1,解得:a<8,且a≠1.故答案为:a<8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.15、【解析】【分析】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长,根据相似三角形对应边的比可得结论.【详解】如图,作A关于BC的对称点A',连接AA',交BC于F,过A'作AE⊥AC于E,交BC于D,则AD=A'D,此时AD+DE的值最小,就是A'E的长;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB•AC=BC•AF,∴3×6=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是,故答案为.【点睛】本题考查轴对称﹣最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题.16、4【解析】
正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4三、解答题(共8题,共72分)17、(1)x<﹣3或0<x<1;(2);(3)y=﹣2x﹣2.【解析】
(1)不等式的解即为函数y=﹣2x+b的图象在函数y=上方的x的取值范围.可由图象直接得到.(2)用b表示出OC和OF的长度,求出CF的长,进而求出sin∠OCB.(3)求直线AB的解析式关键是求出b的值.【详解】解:(1)如图:由图象得:不等式﹣2x+b>的解是x<﹣3或0<x<1;(2)设直线AB和y轴的交点为F.当y=0时,x=,即OC=﹣;当x=0时,y=b,即OF=﹣b,∴CF==,∴sin∠OCB=sin∠OCF===.(3)过A作AD⊥x轴,过B作BE⊥x轴,则AC=AD=,BC=,∴AC﹣BC=(yA+yB)=(xA+xB)=﹣5,又﹣2x+b=,所以﹣2x2+bx﹣k=0,∴,∴×b=﹣5,∴b=,∴y=﹣2x﹣2.【点睛】这道题主要考查反比例函数的图象与一次函数的交点问题,借助图象分析之间的关系,体现数形结合思想的重要性.18、该雕塑的高度为(2+2)米.【解析】
过点C作CD⊥AB,设CD=x,由∠CBD=45°知BD=CD=x米,根据tanA=列出关于x的方程,解之可得.【详解】解:如图,过点C作CD⊥AB,交AB延长线于点D,设CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即,解得:x=2+2,答:该雕塑的高度为(2+2)米.【点睛】本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用.19、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.【解析】分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.详解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC=(米)答:坡底C点到大楼距离AC的值是20米.(2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,∴AF=DE,DF=AE.设CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的长度为(80-120)米.点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.20、(1)(2)详见解析;(3).【解析】
(1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC周长C的取值范围.【详解】经过测量,时,y值为根据题意,画出函数图象如下图:根据图象,可以发现,y的取值范围为:,,故答案为.【点睛】本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.21、-2.【解析】试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可.试题解析:原式===解得-1≤x<,∴不等式组的整数解为-1,0,1,2若分式有意义,只能取x=2,∴原式=-=-2【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.22、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.【解析】
(1)∵点A的坐标为(−2,1),∴2+1=4,点R(0,4),S(2,2),T(2,−2)中,0+4=4,2+2=4,2+2=5,∴点A的同族点的是R,S;故答案为R,S;②∵点B在x轴上,∴点B的纵坐标为0,设B(x,0),则|x|=4,∴x=±4,∴B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度初级农产品加工合作合同3篇
- 2024版技术转让合同:人工智能技术授权使用协议2篇
- 2024版第三人民医院肉类配送服务及食品安全培训合同3篇
- 2024年外资汽车零部件制造股权收购与合作生产合同3篇
- 2024版企业形象设计与推广合同2篇
- 2024版搅拌车租赁行业竞争分析与合作合同2篇
- 2024-2030年中国香水行业竞争力策略及投资营销创新模式分析报告
- 2024-2030年中国风塔用钢产业未来发展趋势及投资策略分析报告
- 2024-2030年中国面粉行业需求动态与销售渠道策略报告
- 2024-2030年中国镀锡板行业需求分析及投资规划研究报告版
- 《仓库盘点培训》课件
- 2024年广东省深圳市福田区中考一模英语试题(解析版)
- 2024版电动汽车充电站建设合同3篇
- 过敏性休克课件护理
- 2024年度美团骑手劳动合同样本3篇
- 铸牢中华民族共同体意识-形考任务3-国开(NMG)-参考资料
- 平面构成(普通高等院校艺术设计专业)全套教学课件
- 食品机械与设备智慧树知到期末考试答案章节答案2024年西北农林科技大学
- 学术交流英语(学术写作)智慧树知到期末考试答案章节答案2024年哈尔滨工程大学
- 国家开放大学《高等数学基础》形考任务 1-4 参考答案
- 工艺技术控制管理程序
评论
0/150
提交评论